
U.P.B. Sci. Bull., Series …, Vol. …, No. …, 2009                                                  ISSN 1454-23xx 

WEEKLY-TERM OPTIMIZATION FOR A HYDRO POWER 
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Hydropower plants with reversible units are not only a power plant, but also 

a managed tool, because can take on the tasks of peak regulation, frequency 

modulation, phase modulation, emergency generation etc. in power grid, or inter-

basin transfer of water with multiple uses. In this paper, a mathematical model for 

the weekly optimal scheduling of a hydropower plant cascade with reversible units 

is presented. The optimization problem is solved by an evolutionary method based 

on the genetic algorithms. The performance function take into account the price / 

cost of the generated consumed power, but the violation of some operational 

restrictions is also penalized. The operation characteristics of units in both 

generating and pumping modes were used. 
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1. Introduction  

The presence of hydropower plants that can operate both in turbinated and 

also in pumping regimes is very important in a power system that has several 

production units (gas and coal power stations, electro - nuclear power stations 

etc.). 

Even though they cannot be compared with the role and position that 

pumping storage hydropower stations have within the power systems, the 

hydropower plant cascade with reversible units can contribute to the taking over 

of the power excess from the off-peak load periods and to the increase of the 

power generated during the peak periods. 

Along with this more or less significant contribution, if the cascade system 

has multiple uses that involve water consumption (irrigations, water supplies for 

the neighbouring communities etc.), thus reducing the power capacities of the 

upstream inflow volumes, the respective consumptions can be provided by 

pumping from the water flow in which the river is discharged. Such an inter-basin 
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transfer can be important if the water amounts taken for irrigations are large and 

the upstream inflow discharge is low. 

In the present paper it is assumed that the cascade lakes have adequately 

large useful volumes which allow weekly operation analysis considering the 

differences both between the daily peak and base load level, but also between the 

working days and the weekend. In order to simplify, but also in order to face the 

lack of economic data about the non-energetic consumptions (extracted flows, 

selling costs and prices), the numerical applications were restricted only to the 

cases relevant from the energetic perspective. 

The optimization model for weekly operation aims at maximizing the 

difference between the gains attained from the power produced in generation 

mode and the costs of the power consumed through pumping. The various 

common restrictions imposed in operation were taken into account (water levels 

between the allowed maximum/minimum values, the maximum level gradients 

accepted, the limitation of maximum turbine capacity depending on the head, 

allowing pumping during off-peak load hours) and the optimization model is 

solved through a genetic algorithm adapted to the analysed problem.  

Although evolutionary algorithms (genetic algorithms, the ant colony 

algorithm, the particle swarm algorithm, the honey-bee mating optimization 

algorithm, etc.) are increasingly used in approaching water resources management 

problems, the authors are not aware of a bibliographic reference that is based on 

the above-mentioned algorithms and dedicated to this particular problem.  

2. Formulation of the optimization problem 

Let’s assume the system of L lakes and cascade hydro power plants (HPP) 

as in Figure 1.  
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Fig. 1. Display of the cascade arrangement for the optimization model  

 

The analysed week timeframe-horizon is divided into N time steps of ∆t 

length, conveniently selected such as to be able to show the light/load periods and 

the peak periods within the K = 7 days (for example 3=∆t  hours). Let’s name tN  

the set of time steps in which the generation mode is admitted and pN  the set of 

the time steps during which the pumping is accepted. 
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The balance equation for a given lake l in the system at n time step, is the 

following: 
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where 0,lV  is the volume in the lake at the beginning of the week; nlV ,  is the 

volume in the lake at the end of time step n; jlq ,  is the incoming flow in the sub-

basin on step j; t
jlQ ,  represents the turbinated discharge by station l if  tNj ∈ ; 

p
jl

Q
,

 represents the flow pumped by station l in its own lake if the step pNj ∈ , 

and  α is a size adjustment coefficient. 

 For the head-cascade lake instead of jlq ,  we have jaQ ,  the upstream 

flow, and the terms t
jlQ ,1−  and 

p
jl

Q
,1−

 disappear from relation (1). 

 It is admitted that on the domain between the normal retention level (NRL) 

and the minimum operating level (MOL), the capacity curve of each lake can be 

linearly approximated in the following form: 

 

llll ZbaV ⋅+= , (2) 

 

where lZ  represents the level of the free surface, and la  and lb  are adequate 

coefficients. 

 The operating restrictions with respect to the existing volumes of the lakes 

are the following: 

 For the upstream lake: 

- uniform daily emptying with *
1Z∆  imposed amount ( *

11
*

1 ZbV ∆⋅=∆ ) for the first 

5 working days of the week , that is: 

 

( )
*

11,1,1 VVV kmkm ∆+= −⋅⋅ , for 5,...,2,1=k , (3.1) 

 

- uniform daily filling up with 25 *
1

*
2 ZZ ∆⋅=∆  and *

21
*
2 ZbV ∆⋅=∆  for the 

weekend days, that is: 
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( )
*
21,1,1 VVV kmkm ∆+= −⋅⋅ , for 7,6=k , (3.2) 

 

where  m represents the number of t∆ steps in one day ( tm ∆= 24 ). 

 For the other lakes in the ensemble: 

- daily level variation restricted to at most  *
3Z∆  imposed value, namely: 

 

( ) lkmlkml VVV ∆≤− −⋅⋅ 1,, , for KkLl ,...,2,1;,...,3,2 == , (4) 

 

where *
3ZbV ll ∆⋅=∆ . 

 For all lakes in the system: 

- positioning between the allowed minimum and maximum volumes, namely: 

 

max
,

min
lnll VVV ≤≤ , for LlNn ,...,2,1;1,...,2,1 =−= , (5) 

 

where max
lV  corresponds to the volume at NRL and  min

lV  to the volume at 

MOL; 

- final return to the volumes existing in the lakes at the beginning of the analysed 

week , namely: 

 

0,, lNl VV = , for Ll ,...,2,1= . (6) 

 

 The performance function of the system was selected as following: 
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where t
nlE ,  represents the power produced during the generation mode at plant l 

for step tNn ∈ , 
p
nl

E
,

 power used for pumping at plant l for step pNn ∈ , t
nc  is 

the price of the power produced in generation at step n, and p
nc  is the cost of the 

power used for pumping at step n. Relation (7) maximizes the net income 

obtained from the operation of the system. If values of t
nc  and p

nc  are imposed to 
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be equal to 1, relation (7) maximizes the net power production obtained from the 

system. 

 As far as determining the amounts of produced/consumed power is 

concerned, it is admitted that each station is equipped with G identical reversible 

units and operation characteristics are known in the form ( )HQfP ,=  both in 

generation and in pumping modes, where P represents the power, Q – the flow 

and H the net head or the pumping head. 

 In generation regime, the matrix of the turbine power is specified on 

plausible domains for heads H and flows Q, with reasonable ∆Q and ∆H steps, 

and for any set of Q and H values, power P is computed by bi-dimensional linear 

interpolation. In addition, some regression equations for the technical minimum 

flow, ( )HQth
min , and for the maximum flow, ( )HQ

max  are defined versus head H, 

and these limits are taken into account for power determinations. 

 Head losses in the plant ch∆  for flow Q, are estimated if the values insth∆  

are known for the installed flow of the unit instQ , by the relation: 

 

( ) ( )
2
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Q

Q
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and the downstream head reduction is obtained from hydraulic calculations as 

function of the overall turbinated flow, tQ , in the form ( )t
av Qfh 1=∆ . In this way 

the net head of plant l is obtained with the relation: 

 

( ) ( )t
lavcll

t
l QhQhZZH ∆−∆−−= +1 , (9) 

 

where t
l

t
l nQQ =  is the used flow for each of the Gn

t
l ≤  equally loaded units and  

lZ  and 1+lZ  are the free surfaces levels of the associated lake and the 

downstream lake, respectively, in static conditions. 

 In pumping mode, since the domain guaranteed in operation is relatively 

narrow, a linear variation versus the head H, both for the pumped flow and also 

for the absorbed power can be admitted. The head loss in the station was also 

estimated by using relation (8), and the downstream head increase versus the 

overall pumped flow, pQ , is known from hydraulic calculation in the form: 

( )p
s Qfh 2=∆ .  
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The overall pumping head at plant l will then be: 

 

( ) ( )p
lscll

p
l

QhQhZZH ∆+∆+−= +1 , (10) 

 

where 
p
l

p
l

nQQ =  is the flow pumped on each of the  Gn
p
l

≤  pumping units. 

 At computation on successive time steps, lZ  levels will be considered as 

average values on each ∆t time step. In addition, as the minimum technical flow, 

the maximum turbinated flow and the pumped flow depend on the head, they will 

be initially evaluated for the conditions existing at the beginning of the first time 

step and then they will be adjusted through a number of iterations on the 

respective step. 

 It is obvious that the power obtained in generation and for pumping mode 

will be next adjusted with the generator efficiency and the motor efficiency, 

respectively, which were here assumed as constant values for simplification 

reasons. 

 As a conclusion, if the sets of turbined flows t
jlQ , , for Ll ,...,2,1= , tNj ∈  

and the pumped flows, respectively, 
p

jl
Q

,
, for Ll ,...,2,1= , pNj ∈ , are known, 

the evolution of the system during the considered time horizon can be determined, 

the produced/consumed power can be computed and the performance function can 

be assessed for the mentioned set of values. The problem yet to solve is the 

finding of the set of values t
jlQ ,  and 

p
jl

Q
,

 which can observe the imposed 

restrictions for the volumes (water levels), can be admissible as equipment 

capabilities and can lead to the maximization of the performance function. 

3. Operation optimization by a genetic algorithm model (AG) 

An optimization problem such as the one briefly summarized above 

belongs to the class of the large size, non linear and hard problems. They cannot 

be efficiently approached, or they cannot be approached at all, via classical 

mathematical programming methods. 

However, the probabilistic searching algorithms that have recently been 

developed allow satisfying suboptimal solutions without major computation 

difficulties for such problems. We can name here the simulated annealing 

algorithm but also the evolutionary algorithms, as the ant colony algorithm and 

the particle swarm algorithm. A sufficiently detailed description of what genetic 

algorithms are and how they operate can be found for example in [1], [2], 
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therefore only adjustment particularities to the considered problem will be 

presented here.  

It is known that AG operates with populations of solutions. In this paper a 

solution is formed by NL×  numerical values. For each lake l, Ll ,...,2,1= ,  N 

such values correspond, and they are represented by t
jlQ ,  the turbinated flows for 

tNj ∈  and by 
p

jl
n

,
 the number of pumping units, for pNj ∈  , respectively. 

For each solution of the initial population, values in the domain 

[ ]instQG ⋅;0  are randomly generated for t
jlQ ,  turbinated flows, and integer 

numbers in the domain [ ]G;0  are generated for 
p

jl
n

,
. These values are fed to a 

simulation model for the weekly operation of the system. The model is iteratively 

runned in order to correct the possible values of the decision variables that lead to 

breaking certain restrictions (overtaking the allowed maximum or minimum 

volumes, overtaking the imposed daily level gradients, overtaking the turbinated 

capacity at the resulting head etc.) and in order to assess the elements necessary in 

power calculations. 

In the end the value of the performance function is computed for each 

solution with a relation as in (7), but two penalty factors are subtracted, namely: 

 

( )∑
=
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The first term refers to observing the daily emptying/filling up programme for the 

upstream lake and the second term refers to the lake volumes returning to their 

initial values. Very high arbitrary values are adopted for 1p  and 2p  and *
,1 kmV ⋅  

represents the volumes computed by relations (3.1) and (3.2). 

 Further, the manner for acting upon the possible corrections of the 

decision variables is exemplified with reference to the computation algorithm 

implemented in the operation simulation model. If in any time step of the 

generation period, the value of the turbinated flow at the plant associated to a lake 

goes beyond the maximum allowed volume, the algorithm increases that flow but 

without exceeding the turbine capacity for the existing head. When this increase is 

not enough to observe the volume restriction, the algorithm lowers the turbinated 

flow on the corresponding time step in the upstream plant. If the time step 

corresponds to a pumping period, the number of pumping units at that plant is 

reduced successively, and if even after stopping all units the maximum allowed 
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volume is still exceeded, the algorithm increases successively the number of units 

that pump in the upstream plant until the volume restriction is observed.   

 Naturally, at lowering below the minimum allowed volume, the algorithm 

operates inversely, both in generation and in pumping modes. If, when lowering 

the turbinated flow this ends up being lower than the minimum technical flow on 

the unit, the turbinated flow will be imposed zero at the plant associated to the 

considered lake, and the correction for observing the volume restriction is made 

on account of the upstream plant. The corrections that lead to observing 

restrictions (4) are performed in a similar manner. 

 Each solution of the initial population is treated as above (and it is 

adjusted such as to observe some of the important restrictions of the problem) and 

one value of the performance function is obtained for each solution. 

 AG creates a new generation of solutions starting from the initial 

population. 

Two solutions from the previous population are selected by a random 

selection process – but which gives higher chances to more performing solutions 

(here the selection by normalized geometric ranking was used). These two parent 

solutions are combined by the arithmetic crossover operator (applied with 0.75 

probability) and are altered through a non – uniform mutation operator (applied 

with 0.02 probability) – in order to produce two new solutions (children solutions) 

which are expected to have better values of the performances functions. The 

selection, crossover and mutation operations are repeated until completing the 

number of solutions that are necessary in the new generation. In evaluating each 

new solution, the simulation model algorithm makes the decision variables 

correction, if necessary, for observing the above- mentioned restrictions.  

 After creating and evaluating the solutions of the current generation, the 

described process is repeated in order to produce a new generation, and so on.

 Newer and newer generations are thus created, and the value of the 

performance function of the best solution is gradually ameliorated. Moreover, the 

generation average of the performance function is improved, the solutions of a 

given generation becoming increasingly closer and better.   

 AG can stop either after going through a pre-established number of 

generations or in accordance with a different conveniently selected criterion.  
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