THERMODYNAMIC ANALYSES FOR OPTIMIZING THE DESIGN AND PREDICTING THE PERFORMANCES OF OXY FUEL ERICSSON-JOULE CYCLE IN SEMI-CLOSED LOOP, WITH FRAGMENTED COMPRESSION, IC, AND RHE

Florin-Niculae ALEXE¹, George-Radu FILIP², Victor-Eduard CENUŞĂ¹

The paper is a thermodynamic approach on oxy-fuel technology, in a semiclosed loop GT Ericsson-Joule cycle, allowing integrated CO_2 capture. In a first step the cycle was analyzed with simplified procedures, to delimitate the interest area. In the second, a complex model, using the thermodynamic properties of different gases involved in the process, and rational input data was used for optimizing the compression and predicting the performances. The results show that the thermodynamic efficiency of analyzed cycle is next to the Combined Cycle one, but with the environmental gain of CO_2 capture.

Keywords: oxy-fuel, CO₂ semi-closed loop, gas turbine, inter-cooling, internal heat recovery, compression ratio, thermodynamic efficiency

Nomenclature: GT - Gas Turbine, TPP - Thermal Power Plant, IRHE/RHE - (Internal) Regenerative Heat Exchanger, IC - Inter-Cooling, LHV – Low Heating Value, HHV – High Heating Value, CC - Combined Cycle, ST - Steam Turbine, K - compressor, CA - Combustion Chamber, T - Turbine, G - electric Generator.

1. Introduction

The idea of a thermodynamic analyze on a Ericsson-Joule cycle using oxyfuel came from the need to understand the implications of changing the usual working fluid for a GT cycle, with a fluid consisting mostly from carbon dioxide (CO₂). The first steps were made using a simplified model in which CO₂ is the working fluid in a closed cycle, providing us the optimum configuration of the gas turbine cycle. Now having this configuration set, we lead our study to a more close to reality case by applying a model based on the real thermodynamic properties of the working fluid (gases mixture) in the different points of the installation. We putted into evidence the need of vapor water condensing during inter-cooling, in order to obtain high purity CO₂ after the compression line, ready for transport and storage. The considered fuel is a usual clean natural gas (mostly methane and no Sulfur content). For different compression ratios we evaluate the

¹ Prof., Power Engineering Faculty, University "Politehnica" of Bucharest, Romania

² Eng., Institute for Studies and Power Engineering, Bucharest, Romania.

technical performance indicators and optimum compression ratio.

2. Objectives, assumptions and methods.

Oxy-fuel TPP use CO_2 semi-closed loops, allowing the integrated CO_2 capture [1 to 4]. The paper refers to the situation when CO_2 is the working fluid in a GT cycle, witch pressures does not depend from the atmospheric one. In order to keep clean the working agent it is necessary to use a clean fuel - in this situation the natural gas. *The first objective* of the paper is choosing cycle's configuration. We started from the simple Joule cycle (Fig. 1), adding first an Internal Regenerative Heat Exchanger (IRHE) - Fig. 2, and then fragmenting the compression in 2 to 4 stages, with 1 to 3 Inter-Cooling processes (IC) - see fig. 3 to 5 [5]. In the paper the latest 3 designs will be labeled as Ericsson-Joule cycles.

Fig. 1 to 5. Analyzed cycles configurations

The second goal of the study is predicting the performances for the selected configuration. We studied the influence of the compression ratio on the technical performances, and we elected the optimal compression ratio. For these ones, **the third objective** is computing the installation's performances in given conditions, for real thermodynamic processes, and constructing the Sankey diagram of the thermodynamic cycle.

Modeling the real thermodynamic processes used in the first phase is done by analytical, simplified, methods by considering the installation filled with pure CO_2 , which acts like a quasi-ideal gas [6], far from its critical point, and works in closed loop; like an outer burning cycle. The irreversibility of real thermodynamic processes (temperature difference at RHE, revolving machines isentropic efficiencies, and pressure drops) were taking into consideration [5]. For the heat exchangers we neglected the heat losses by thermal insulation.

Because the complexity of the process no common linear model was able to fulfill the needs of a good modeling, consequently for the second phase we created an iterative computing program. The simulation is performed only for stationary design loads. We are taking into consideration the real properties of the usual technical gases, and gases mixture [6]. For the water and steam properties where used International Association for the Properties of Water and Steam (IAPWS) equations [7]. We created procedures for numerical modeling of compression, burning, expansion, and cooling. The latest could include condensing the water vapor resulted from burning process. We started with input data based on the first phase results, and we recalculated the cycle and new entry data. The calculus is continuing until the error is small enough.

3. Presentation and interpretation of the obtained results

In the first phase, for the different configurations shown in Fig. 1 to 5 the global compression ratio variation was used for drawing diagrams of the main thermodynamic efficiency indicators. Fig. 6 and 7 show the evolution of the net mechanical work and net efficiency for each configuration.

Fig. 7. Net thermal efficiency vs. global compression ratio, for diverse configurations

We found out that the best choice is a semi-closed loop Ericsson-Joule cycle with 3 compression stages and 2 IC heat exchangers (see Fig.8.). For this design we optimized the compression ratio, and we obtained new results regarding the variation of net efficiency and net mechanical work (see Fig. 9 and 10).

Tables 1 and 2 show the inputs data for the fuel (natural gas specific for Romania, with high methane ratio and without Sulfur) and the oxidant (Oxygen with almost 95 % purity, and about 5 % Argon), considered for the real condition.

Thermodynamic Analyses for Optimizing the Design and Predicting the Performances of Oxy Fuel Ericsson-Joule Cycle in Semi-Closed Loop, with Fragmented Compression, IC, and RHE

53.4%

53.0%

ratio per stage, for the optimal design

Fuel parameters				
Parameter	Value	Units		
Total pressure	43.034	bar		
Temperature	50.0	⁰ C		
Mixture enthalpy	109.68	kJ/kg		
Mixture entropy	-1.436	kJ/kg/K		
HHV	39 511	kJ/m ³ _N		
LHV	35 490	kJ/m ³ _N		
Mixture density:	26.5655	kg/m ³		
Mixture molecular weight	16.521	kg/kmol		

52.6% 48.4% 52.6% Thermal eff. HHV 52.2% eff. LHV 47.6% ma] 46.8% 51.4% 46.0% Thermal eff. HHV 51.0% 45.2% Thermal eff. LHV 50.6% 44.4% 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 2.2 2.4 Compressio ratio per stage

<u>...</u>

50.0%

49.2%

Oxidant parameters					
Parameter	Value	Units			
Total pressure	43.034	bar			
Temperature	25.0	⁰ C			
Mixture enthalpy	22.987	kJ/kg			
Mixture entropy	-0.830	kJ/kg/K			
Mixture density:	47.992	kg/m ³			
Mixture molecular weight	32.123	kg/kmol			

Table 3

Working fluid	parameters and	composition in	different	points of the process	
The second	parameters and	composition m	uniter ente	pointes of the process	

Table 1

		-	0											
No	р	t	h	s	ρ	μ	Molec	ular pe	ercenta	ges, %	Weig	ht per	centag	es, %
INU	bar	⁰ C	kJ/kg	kJ/kg/K	kg/m ³	kg/kmol	r _{H2O}	r _{N2}	r _{O2}	r _{CO2}	g _{H2O}	\mathbf{g}_{N2}	g ₀₂	g _{CO2}
1	35.86	602.7	634.26	0.5502	13.43	42.967	0.423	5.535	0.458	93.59	0.177	3.626	0.341	95.86
2	34.73	1 200	1 537	1.5596	7.108	40.787	9.117	5.065	0.418	85.40	4.027	3.496	0.328	92.15
3	1.12	652.7	815.04	1.6494	0.364	40.787	9.117	5.065	0.418	85.40	4.027	3.496	0.328	92.15
4	1.08	254.5	349.20	1.0029	0.619	40.787	9.117	5.065	0.418	85.40	4.027	3.496	0.328	92.15
5	1.07	45.3	140.85	0.5066	1.01	40.787	9.117	5.065	0.418	85.40	4.027	3.496	0.328	92.15
6	1.05	31.9	75.17	0.2999	1.087	41.956	4.449	5.325	0.439	89.79	1.911	3.573	0.335	94.18
7	3.52	132.7	168.16	0.3231	2.736	41.956	4.449	5.325	0.439	89.79	1.911	3.573	0.335	94.18
8	3.46	54.5	95.25	0.1270	3.335	41.956	4.449	5.325	0.439	89.79	1.911	3.573	0.335	94.18
9	3.41	31.9	41.43	-0.0424	3.631	42.727	1.371	5.497	0.453	92.68	0.578	3.621	0.340	95.46
10	11.41	132.3	132.71	-0.0196	9.15	42.727	1.371	5.497	0.453	92.68	0.578	3.621	0.340	95.46
11	11.23	54.5	61.24	-0.2119	11.14	42.727	1.371	5.497	0.453	92.68	0.578	3.621	0.340	95.46
12	11.05	31.9	31.28	-0.3052	11.89	42.965	0.423	5.549	0.458	93.57	0.177	3.636	0.341	95.85
13	37.03	132.2	122.04	-0.2825	29.96	42.965	0.423	5.549	0.458	93.57	0.177	3.636	0.341	95.85

Table 3 shows the parameters and composition of the working fluid in different points of the process. With these values the approximate T-s diagram shown in the Fig. 11 was constructed.

Fig. 11 T-s diagram

Table 4

The main thermal cycle performance indicators in the optimized configuration

Parameter	Notation	Value	Units
Mechanical work produced by the gas turbine	L _T	793.91	kJ/kg
Mechanical work consumed by the compressor	L _K	292.87	kJ/kg
Net mechanical work	L _{net}	501.04	kJ/kg
Relative compressor energy consumption	C _{r K}	36.89	%
Heat received from the hot source for HHV of the fuel	Q _{1HHV}	1 051.87	kJ/kg
Heat received from the hot source for LHV of the fuel	Q _{1LHV}	944.83	kJ/kg
Exhausted heat to the cold source of the cycle	Q ₂	542.19	kJ/kg
Internal heat recovery	Q _{rec}	512.23	kJ/kg
Heat recovery ratio for HHV of the fuel	$C_{QR HHV}$	48.70	%
Heat recovery ratio for LHV of the fuel	C_{QRLHV}	54.21	%
Thermodynamic cycle efficiency for the fuel's HHV	η_{t_HHV}	47.63	%
Thermodynamic cycle efficiency for the fuel's LHV	η_{t_LHV}	53.03	%

Putting all together we completed the work by calculating the main performance indicators (Table 4), and representing the energy flows in a Sankey diagram (Fig. 12).

Fig. 12. Sankey diagram

where:

P_{t1} = fuel thermal power (HHV)	P_R = re circulated heat
P_{GT} = internal GT net mechanical work	$\Delta P_{\text{cooling}}$ = exhausted heat
ΔP_m = mechanical losses	P_{mK} = mechanical power at GT couple

4. Conclusions

The general guidelines for increasing the performances of Ericsson-Joule cycles are: *A*) reducing the irreversibilities and choosing a design correlated with them; *B*) increasing the CC's outlet temperature. Because of processes irreversibilities, the analyzed cycle's efficiency augment is gradually lower when n_{IC} ascend from n_{IC} =1 to n_{IC} =2, becoming inferior for n_{IC} =3 than for n_{IC} =2. That's

why we were choosing the design with 3 compression stages and 2 ICs.

The thermodynamic efficiency of Oxy-fuel GT TPP using CO_2 semiclosed loop, resulted for the fuel's LHV, is comparable with those of CC TPP. The environmental gain is that the analyzed cycle allows the integrated CO_2 quasi-total capture [8, 9]. The economic limitation is that, it is necessary using a clean fuel - natural gas - with a higher cost.

The procedures created in this paper for numerical modeling the real properties of usual technical gases and gases mixture, and their real thermodynamic processes could be employ for other similar purposes, like analyzing oxy-fuel processes in a CC gas-steam, or ST TPP burning coal, using CO_2 in semi-closed loops, with ST and without GT.

REFERENCES

- G. Göttlicher, The Energetics of Carbon Dioxide Capture in Power Plants, Feb. 2004, USA-DOE, Translated & updated edition of "Energetik der Kohlendioxidrhckhaltung in Kraftwerken, Fortschritt-Berichte", VDI Reihe 6 Nr. 421 (VDI Progress Reports Series 6 No. 421). VDI-Verlag, Dusseldorf 1999
- [2]. K. Andersson, Process Evaluation of CO₂ Free Combustion in an O₂/CO₂ Power Plant, Masters Thesis, Department of Energy Conversion, School of Mechanical Engineering, Chalmers University of Technology, Goteborg, Sweden, 2002.
- [3]. *J. Beer*, High efficiency electric power generation: The environmental role, in Science Direct, Progress in Energy and Combustion Science 33 (2007) 107–134, Ed. Elsevier Ltd.
- [4]. D.J. Dillon, R.S. Panesar, R.A. Wall, R.J. Allam, V. White, J. Gibbins, M.R. Haines, Oxycombustion processes for CO₂ capture from advanced supercritical PF and NGCC plant, in Proceedings of the seventh conference on greenhouse gas control technologies (CHGT-7), Vancouver, BC, Canada, 2004.
- [5]. *F. Alexe, V. Cenusa*, Thermodynamic Analyses for Optimizing the Design of HTGR's Helium Brayton Cycles, in WSEAS Transactions on Environment and Development, Issue 11, Volume 4, November 2008, pp.1014-1025
- [6]. *E. W. Lemmon, M.L, Huber, M. O. McLinden,* REFPROP, Reference Fluid Thermodynamic and Transport Properties, NIST Physical and Chemical Properties Division Standard Reference Database 23, Version 8.0., 2007
- [7]. *B. Spang*, Equation of IAPWS-IF97, <u>http://www.cheresources.com</u>
- [8]. *Hanne Kvamsdal, Kristin Jordala, O. Bolland,* A quantitative comparison of gas turbine cycles with CO₂ capture, in Science Direct, Energy 32 (2007) 10–24, Ed. Elsevier Ltd.
- [9]. O. Bolland, Henriette Undrum, A novel methodology for comparing CO₂ capture options for natural gas-fired combined cycle plants, in Advances in Environmental Research 7 (2003) 901–911, Ed. Elsevier Ltd.