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The paper presents Boundary Element Method (BEM) with linear elements 

for the numerical simulation of incompressible and ideal flow around reversible S 

axial profile cascades. Applying BEM to the Laplace equation in the stream 

function, the values of function, its normal derivative on the analysis domain 

boundary and the circulation are obtained. Next, applying BEM to the Laplace 

equation in the stream function and in the velocity potential function, the 

hydrodynamic field, the velocity field and the pressure field inside of the domain are 

obtained. The method was applied to a family of “S” axial turbine cascades. 

Keywords: Boundary Element Method (BEM), Γ boundary, Laplace equation, 
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1. BEM theoretic basis with linear elements 

BEM is a digital algorithm for approximate solution of Laplace equation 

in a closed and limited plane domain Ω , with boundary conditions by Laplace 

equation transformation from an integral equation given on boundary domain.  

We take Ω as a limited domain from R
2
 Euclidian plane and Γ his 

boundary, which means that Γ∪Ω=Ω . We suppose that Γ boundary is some 

pieces smooth, which means that it has a limited number of angular points. That 

means that tangent at Γ boundary is continual varying, excepting in a limited 

number of P1, P2..., Pr ∈ Γ points. The same behavior has the normal n
r

, on Γ 

boundary (fig.1). 

We consider on Ω domain the Laplace equation: ∆u = 0. We can 

demonstrate that any solution u, of Laplace equation, checks the integral equation: 

( ) ( ) ( ) ( ) ( ) ( ) Ω∈−= ∫∫ ΓΓ
ζζζζζ where,,,

**
zz dszqzudszuzquc . (1) 

In relation (1), we use the notations:  

• ,with,/)()( Γ∈∂∂= znzuzq  is normal derivate of u function; 
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• ),(/1ln2/1),(*
zrzu ζπζ =   is fundamental solution of Laplace equation 

attached to ζ point and defined on R
2
 \ }{ζ , verifying on this assemblage, the 

Laplace equation ;0* =∆u  

• ( ) ( )22
),( ηξζ −+−= yxzr  with ( )ηξζζ ,=  and ( )yxzz ,= ; 

• ( ) zzuzq ∂∂= /,),( ** ζζ ; 

• ( )
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Fig. 1. P2 angular point on Γ boundary. Fig. 2. Γ boundary discretization. 

 

Laplace equation and integral equation (1) have an infinite solution; to 

determine a certain solution imposed condition on u function Γ boundary and 

q= nu ∂∂  derivate. If it impossed aζ value on u function in a point ζ Є Γ, u(ζ) = aζ 

conditions, is named essential condition and q(ζ) = bζ condition, is named natural 

condition. Generally, we have a mixt problem, like: 

  
( ) ( )
( ) ( )




Γ∈−=

Γ∈−=

2

1

pentru

pentru

ζζζ

ζζζ

gq

fu
   (2) 

with 21 Γ∪Γ=Γ , ( )ζf  and ( )ζg  are functions given on 1Γ  and 2Γ boundaries. 

Having the integral equation (1) with conditions on limit (2) we can digital 

resolve it, meaning applying BEM It is enough to resolve equation (1) on Γ 

boundary because if ζ ∈ Ω,  then ( ) 1=ζc , and relation (1) becomes: 

( ) ( ) ( ) ( ) ( ) Ω∈−= ∫∫ ΓΓ
ζζζζ where,,,

**
zz dszqzudszuzqu . (3) 
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The relation (3), permits us to calculate u function in every point of Ω 

domain, because the elements under the integral are known after we solve 

equation (1) on Γ. 

BEM application with linear elements imposes two types of simultaneous 

approximations: 

1. Boundary meshing (discretization) – that means to take N points  M1, M2, ..., 

MN on Γ boundary; we noted with Γi for i1i M,M − segments; so, we replace Γ 

boundary with U
N

i

i

1=

Γ=Γ - a polygonal line (fig. 2);  

2. The linear approximation of u and nuq ∂∂= /  functions on every Γi element; 

( )Nii ,1=Γ  segments are named boundary elements. 

We note xi and yi the coordinates of Mi points. If on Γi boundary element 

we take t ∈ [-1,1], so for Mi-1 point, t=-1 and for Mi point, t=1, the coordinates of a 

point Mj (x,y) ∈ Γj, is verifying the relation: 

       

( ) ( )

( ) ( )
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  (4) 

We take ui and qi unknown values of u and q functions in points Mi 

( Ni −= 1 ).  We suppose that u and q have a linear variation function of t on Γj 

boundary for every t ∈ [-1,1]. For u and q, we have the relations: 

( ) ( ) ( )

( ) ( ) ( )
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211

ϕϕ

ϕϕ
   (5) 

We replace in equation (1), Γ boundary with U
N

i

i

1=

Γ=Γ  and u and q functions with 

(5) expression. It results: 

( ) ( ) −
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where ΓN+1 = Γ1 and u
*
 and q

*
 depends on Ω∈ζ  variable. 

Now, we replace in relation (6), ζ one by one, with the values of M1, M2, 

...., MN points and we note: 

( )

( ) ( )

( ) ( )
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,1where,

j j

j j

dsMuqdsMuG

dsMqdsMqcH

NiMcc

ijiij

iiiijij

iii

ϕϕ

ϕϕδ . (7) 

So, (1) equation becomes a linear system of equations:  

0

11

=− ∑∑
==

N

j

jij

N

j

jij uHqG  for Ni ,1=  (8) 

In this system, the unknown are: u1,...,uN and their derivates q1,...,qN, Gij 

and coefficients Hij, are some curvilinear integrals (on Γj segments), from known 

functions; they become some definite integrals between -1 and 1 reporting to t 

parameter. 

If i≠j the integrals which give the values of Gij and Hij do not have 

singularities points and they can be calculated (by Gauss method – for example).  

If i=j, the integrals are improper and they can be calculated so: 

� Gii - there are directly calculated, and it obtain: 

( ) ( ) Nil
l

l
l

G i
i

i
i

ii ,1,ln
2

3

2
ln

2

3

2
1

1 =





−+





−= +

+   (9) 

where li is length of segment iΓ  (lN+1 = l1); 

� Hij there are indirectly calculated, knowing that ( ) 1≡zu  function with Ω∈z , 

is verifying 0=∆u  Laplace equation; so, from relation (8) we obtain relation 

(10): 

NiH
N

j

ij ,1,0

1

==∑
=

 or ∑
≠=

−=
N

iji

ijii HH

,1

  (10) 
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So, (1) integral equation on Γ boundary, is reduced to a N system 

equations in 2N unknowns, the approximate values of unknown u and q functions, 

in M1, M2, .....MN points. 

The solution of Laplace equation depends on N parameters. To determine 

a given solution for a concrete problem in relation (8) it is generally imposed the 

value of K sizes ui and N-K sizes qj. Generally if to relation (8) we add N linear 

relation (limit mixt condition – essentials and naturals) by form: 

( ) Niqu
N

j

ijijjij ,1,

1

==+∑
=

γβα .   (11) 

then relation (8) have unique solution. 

2. Calculation of u function and its derivates q inside Γ  boundary 

We take ( )( ) Ω∈= 0000 , yxM ζ . In this case ( ) 10 =ζc . The relation (6) 

for 0ζζ = , becomes: 

( ) ∑∑
==

−=
N

j

jj

N

j

jj uHqGu

1
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1

00ζ    (12) 

where: 
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The integrals form relations (13) are deduced to non-singular definite 

integrals  [ ]( )1,1for −∈t  and are calculated identically like Hij and Gij coefficients 

( ).with ji ≠  Because u
*
 and q

*
 are indefinite derivable in every Ω∈0ζ , in 

integrals from equations (13) it can be derivates under the integral every time we 

want. From (12) and relations (13) results: 
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where: 
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Because the analytical expression of partial derivatives 

( ) ( )mmnm
yxu 000

* / ∂∂∂ + ζ , ( ) ( )mmnm
yxq 000

* / ∂∂∂ + ζ  is complex, we prefer to 

calculate u function by digital derivations. This, because we can calculate the 

values of u functions in points as close as can be, using relations (13).  

3. Numerical results 

The method was applied to a reversible axial “S” turbine cascade. In 

figures 3–16, we present the results for an axial reversible “S” turbine cascade 

(with modulation of chord at ap=0.7l) composed of profiles from the NACA 4412 

class with the parameters: t/l = 0.8322; a=b = 0.4161; βAM
 = 48.48°; βs = 32.99°. 

After computations, we obtained: βAV
= 34.71° and Γt

 = 0.37. All parameters are 

non-dimensional. 

 

 
Fig. 3. The reversible profile NACA in “S”. 

 
 

             

                

            Fig. 4. Leading edge NACA S profile.                      Fig. 5. Trailling edge zone NACA  S profile. 
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Fig. 6. The domain of analysis. Fig. 7. The hydrodynamic field. 

 

 
 

 
Fig. 8. The velocity field on the 

profile boundary. 

Fig. 9. The pressure field on the 

profile boundary. 

 

 
 

 
 

Fig. 10. The velocity field on the profile 

 boundary in the leading edge zone. 

 

Fig. 11. The pressure field on the profile 

 boundary in the leading edge zone. 
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Fig. 13. The velocity field on the profile 

boundary in the trailling edge zone. 

         Fig. 14. The pressure field on the profile  

              boundary in the trailling edge zone 

 

 
                        Fig. 15. The speed field in the domain of analysis. 
 

 
Fig. 16. The pressure field in the domain of analysis. 
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4. Conclusions  

Using of BEM method, with linear elements, in hydrodynamic turbo-

machines proved to be efficient, operative and of great accuracy. It opens great 

perspectives and will even determine a transformation in our research and design 

view on these machines. 

Applying BEM with linear elements to the Laplace equation in the stream 

function values, the values of function, its normal derivative on the analysis 

domain boundary and the circulation are obtained. 

Finally, the hydrodynamic field, the velocity field and the pressure field 

inside of the domain are determined. 
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