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We will consider the dispersion of a conservative pollutant into an 

unconfined aquifer. The contaminant source is a polluted lake which is a boundary 

for the groundwater. 

Considering the continuity equation and the Darcy’s law for an unconfined 

aquifer, the velocity and the water table level will be computed, related with the 

boundary conditions. The water table level )(xh  is obtained from the steady-state 

equation of one-dimensional flow through a saturated, homogenous, isotropic 

aquifer. The unconfined aquifer is limited by two lakes whose levels and qualities 

determine the flow in the aquifer and the boundary conditions for the pollutant 

dispersion. The phreatic velocity is variable in x -direction. The variable aquifer’s 

velocity will determine a variable dispersion coefficient along the aquifer. 

We propose a numerical solution of the one-dimensional dispersion equation, 

with variable coefficients and we analyze the difference between that one and the 

solution obtained for the dispersion equation with constant coefficients. 
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1. Introduction 

We analyze the influence of a polluted lake or stream on the water quality 

of an unconfined neighboring aquifer. Due to the interconnections between 

streams and aquifers, stream pollution may influence aquifer pollution and 

conversely. A stream is a boundary condition in piezometric head for hydraulic 

model and in pollution concentration and flux for the groundwater pollution 

model. These concentration conditions are the outputs of a stream-pollution 

model. We try to obtain a simple, robust model to predict the pollutant 

concentration in time and space. The groundwater variable velocity is used in the 

dispersion-advection equation of the pollutant. 

2. Hydraulic model of steady groundwater flow in unconfined aquifer 

Let consider the groundwater flow in x -direction of an unconfined 

aquifer. 
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Fig. 1. Steady flow in an unconfined aquifer, between two water bodies with vertical boundaries. 

 

For a two dimensional homogenous, isotropic medium ( KKK yx == ), 

Darcy’s law assumes the velocity in the aquifer has the components: 
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where K  [ 1TL − ] is the hydraulic conductivity, h [L] is the height of the water 

table above an impervious base, x [L] is the direction of flow, and z [L] is the 

vertical direction. 
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is called Darcy velocity. The real interstitial water velocity in the groundwater is: 
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where 
en  is the effective porosity of the aquifer. 

In our model we use Dupuit’s hypothesis: (i1) the velocity of the flow is 

proportional to the tangent of the hydraulic gradient instead of the sine, as defined 

Darcy’s law; (i2) the flow is horizontal and uniform everywhere in a vertical 

section (no flow in z direction, 0=
∂

∂

z

h
, 0=zU ).  

The Darcy’s velocity in the aquifer is 
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and the discharge per unit width, at any vertical section is 
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Considering the aquifer from Fig. 1, the integral 
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gives the value of the discharge in the aquifer: 
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0h  and 1h  are the water levels in the two water bodies neighboring the aquifer. 

The equation   ∫∫ −=
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gives the thickness of the aquifer 
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Fig. 2. Water table position for an unconfined aquifer. 

 

The real interstitial velocity is: 
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The real water table does not follow the parabolic form never the less for 

flat slopes, where the sine and tangent are nearly equal. The equation (8) 

accurately determines the discharges. The water table level )(xh  is sufficiently 

correct, except near the outflow. The calculated velocity is constant for each 

vertical section, normal to flow, but change its value for different x . The real 

velocity vector varies in a vertical section, in the water table proximity and near 

the outflow (seepage face). Excepting the boundaries AB and DC the results 

obtained with Dupuit’s hypothesis are general accepted. 

For a particular aquifer, with m350 =h , m301 =h , m/day30=K , 

2.0=en , m350=L , the water table position (10) and the velocity (11) are 

plotted (Figs 2 and 3). 

 

 
Fig. 3. Real velocity along the unconfined aquifer. 

 

3. Mass transport of conservative pollutants in an unconfined aquifer 

The dispersion is a non steady irreversible mixing process spreading the 

tracer within the surrounding flow system. Dispersion is essentially a microscopic 

phenomenon caused by a combination of molecular diffusion and hydrodynamic 

mixing occurring with laminar flow through porous media. 

The mathematical description of dispersion is based on statistical concepts 

[1], on theoretical studies [3] or on experimental studies. 

The law of mass conversion for solute transport in saturated media 

considers the flux of solute into and out of a fixed elemental volume. 

Conservative solutes are non-reactive with the soil and with the 

groundwater and do not undergo biological are radioactive decay. For a non-
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reactive dissolved substance the flux into the element and the flux out of the 

element are equal to the net rate of change of mass of solute within the element. 

The one-dimensional, advection-dispersion equation is: 

443442144 344 21
advectiondispersion
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Advection is the transport of solute by the following groundwater. 

Hydrodynamic dispersion results from mechanical mixing (dispersivity) and 

molecular diffusion. ),( txC  [ML
-3

] is the pollutant concentration, )(xvx  [ 1TL − ] 

is the average interstitial groundwater velocity, 
en  is the effective porosity 

(dimensionless), )(xDx  [ 12 TL − ] is the dispersion coefficient: 

DxvxD xxx +α= )()( ,    (13) 

xα  [L} is the dynamic dispersivity (a characteristic property of the porous 

medium), D  [ 12 TL − ] is the molecular diffusion (effective diffusion coefficient). 

Usually xx vD α<<  (mechanical dispersion), and 

 Lx 1,0=α , [3],     (14) 

where L  is the length of the flowpath. 

Our problem is to solve the advection-dispersion equation (12) for the 

unconfined aquifer from (Fig. 1), considering the variable velocity given by (11), 

and a mechanical dispersion in the porous medium )()( xvxD xxx α= . 

For boundaries conditions we consider the polluted lake (AB) having a 

constant 
0C  concentration, and at the outflow lake (CD) an unknown 

concentration. The initial values of concentration in the aquifer are known. 

4. A numerical solution of the advection-dispersion equation with 

variable coefficients 

We have obtained a numerical solution of the advection-dispersion 

equation (12) with initial conditions and boundaries conditions described above. 

For the approximation of the one dimensional dispersion equation with 

variable coefficients (12) we use an implicit numerical scheme. The implicit 

approximations are unconditionally stable and convergent [1]. 

)ji,(),( CtxC =  is the pollutant concentration, in aquifer, at a distance x  

from the lake, after t  hours from the beginning of contamination ( 00 =t ). 

In the approximation of tC ∂∂  we consider known the concentration 

values ),( 1txC  and we are looking for ),( 2txC , with 12 tt > : 
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An implicit approximation implies to compute the right terms of the 

equation (12) at the 2t  moment. 
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All ),( 2txC  are unknown. For a constant spatial )i()1i(d xxx −+= , 

( 1N:1i −= ), and a temporal )j()1j(d ttt −+= , ( 1M:1j −= ), the approximated 

fully implicit form of the equation (12) will be, for 1N:2i −=  and 1M:1j −= , 

)1ji,()1ii,()1j1,i()ii,()1ji,()1ii,()1j1,i( +=+⋅+−+⋅++−⋅+− laCaCaC  (17) 
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The boundary conditions give two equations for 1i = , ( 0=x ) and Ni = , 

( Lx = ). A constant concentration in the polluted lake 
0),0( CtxC ==  implies  

0)1j1,( CC =+  for 1M:1j −= .    (22) 

For Lx =  we impose the condition  

)1jN,()1j1,N( +=+− CC  for 1M:1j −=    (23) 

The initial conditions are: 

0)1i,( =C  for N:2i =      (24) 

0)1,1( CC =        (25) 

For each moment ( 1j + ), ( 1M:1j −= ), a linear system of equation:  

}{}{][ lCa =      (26) 

is obtained, and a procedure has to be chosen to solve it. 

5. Results and conclusions 

We compare the results for variable velocity in the aquifer (Fig.4, Fig.5) 

with the solution obtained for a constant velocity [2]. A relative, procentual error 

is calculated (Table 1): 
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( ) 100)/)(( 0constvar% ⋅−=ε CCCabs vv ,   (27) 

varvC  is the matrix of )M:1jN,:1i(),ji,( ==C  obtained for a variable velocity 

in the aquifer, constvC  is the matrix of )ji,(C  for a constant velocity. 

 

 
Fig. 4. Concentration C(x,t), along the aquifer, at different moments, t. 

 

 

 
Fig. 5. Time variation of concentration C(x,t), at different distances along the aquifer.  
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Table 1 

ε (%) error values for different hydraulic conductivity in the aquifer 

 t(days) 

x(m) 

1 10 20 40 100 150 200 

 

1 0.3989 0.0894 0.0649 0.0498 0.0406 0.0393 0.0390 

10 1.5266 0.9133 0.6678 0.5078 0.4077 0.3942 0.3909 

100 0.0010 0.7617 2.4931 3.9051 4.0320 3.9604 3.9503 

150 0.0000 0.0689 0.8014 3.1094 5.4131 5.7339 5.8694 

200 0.0000 0.0032 0.1284 1.4974 5.7158 7.0040 7.5774 

 

 

K=30m/day 

350 0.0000 0.0000 0.0000 0.0147 2.3090 6.5458 9.7852 

1 0.6300 0.1500 0.1100 0.0800 0.0500 0.0500 0.0400 

10 1.1100 1.4300 1.0700 0.7900 0.5400 0.4700 0.4400 

100 0.0000 0.0100 0.2000 1.4000 3.7100 4.0800 4.1200 

150 0.0000 0.0000 0.0000 0.1700 2.4400 3.9500 4.7600 

200 0.0000 0.0000 0.0000 0.0100 0.8700 2.4600 3.9000 

 

 

K=10m/day 

350 0.0000 0.0000 0.0000 0.0000 0.0600 0.0600 0.3700 

1 1.2200 0.4500 0.3200 0.2200 0.1400 0.1200 0.1000 

10 0.0500 1.5900 2.0000 1.8700 1.4000 1.1900 1.0600 

100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0400 0.1700 

150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

K=1m/day 

350 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

The difference between the computed curves ),( txC  for constant velocity 

and variable velocity is significant, after 40 days, for a distance m100≥x . 

The concentration values computed considering a variable velocity in the 

aquifer are generally less than those calculated with a constant velocity. The 

maxim difference is obtained for a m350=x  distance, after 40 days. 

Our conclusion is the more accurate results are obtained considering a 

variable velocity in the unconfined aquifer. The calculated error εdecreases with 

K  value. For a hydraulic conductivity day/m1=K  the differences ε  are 

insignificant so for this case a constant velocity value can be used to compute the 

concentrations. 
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