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This paper presents a Genetic Algorithm (GA) approach to the 

transmission network planning problem in electric power systems (TNEP). 

The TNEP problem seeks to determine when and where new circuits are 

needed and should be installed to serve, in an optimal way, the growing electric 

energy market, subject to a set of electrical, economic, financial, social and 

environmental constraints. This problem has a dynamic nature, since the 

requirements of transmission facilities (lines or power transformers) should be 

defined over time within a given horizon.  

On the other hand, the transmission expansion planning can also be done 

in a “static” way, where the planning is performed for the horizon year, with the 

goal of determining the reinforcement needed for this specific year only (STNEP). 

This paper deals with the static approach, the dynamic one being a more complex 

topic, beyond the scope of this research. 

In spite of being simpler than the dynamic planning, the static planning is 

still very complex, and research has been stimulated worldwide to develop 

computational tools to facilitate the solving of this task. This is a very large – scaled, 

mixed integer mathematical programming problem that frequently presents many 

local, sub – optimal solutions, and for which the number of possible solutions grows 

exponentially with the network size. The objective of this problem is to determine the 

most economical planning scheme(s) to meet the load demand in the horizon year 

subject to the security or reliability constraints. 

The STNEP problem and its mathematical modelling are briefly described. 

The proposed Genetic Algorithm is applied to a reference electric system for which 

the solution is known and its performance is compared against classical solution 

methods.  
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1. Introduction 

The transmission expansion planning of electrical power systems is a 

complex task, involving the determination of where, when and which facilities 

must be built to guarantee an economic and reliable supply of the predicted load 

up to the horizon year. 

 The planner performs his studies, trying to fulfill the aims mentioned 

above, considering the following initial data: the topology of the existing 
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electrical network, a set of new feasible generating plants, the predicted load for 

each bus of the system, the operating limits of all equipment which forms the 

electrical system and the costs of both investment and operation. Afterwards, the 

planner has to determine the minimum cost plan, taking into account the available 

initial data and some reliability criteria. 

In addition to this, the planner uses his own knowledge, represented by 

planning heuristics, which he developed as a result of many years of expertise and 

are associated with his ‘feeling’ of the system under study. 

This paper deals with the static approach, the dynamic one being a more 

complex topic, beyond the scope of this paper. 

In spite of being simpler than the dynamic planning, the static planning is 

still very complex, and research has been stimulated worldwide to develop 

computational tools to facilitate the solving of this task. This is a very large – 

scaled, mixed integer mathematical programming problem that frequently 

presents many local, sub – optimal solutions, and for which the number of 

possible solutions grows exponentially with the network size. 

 As the computational burden of obtaining the minimum cost plan is very 

high, modem techniques have been proposed to decrease the CPU time, or even 

for searching sub-optimum solutions.  

The expansion of transmission systems is generally modelled 

mathematically using the DC model, which involves mixed integer nonlinear 

programming. However, its application is problematic for large systems. Various 

modifications have thus been developed, including relaxed versions of the DC 

power flow model, such as the transportation model, the hybrid model and the 

disjunctive model.  

This paper presents a development of a genetic algorithm and its 

application to the static transmission network expansion planning (STEP) 

problem. A relevant model of fitness function has been constructed and an 

encoding method is suggested in order to obtain the optimal results. An IEEE 6-

bus system is used to validate the proposed method. 

2. Problem Formulation 

The general trend in TNEP research is the using of several standardized 

models of the problem. [1]. This paper uses a simplified DC model, presented in 

the following, taking into consideration the three assumptions: 

� Branch resistances R and charging capacitances Bc are negligible (i.e. the 

branches are lossless); 

� All bus voltage magnitudes are close to 1 p.u.; 

� Voltage angle differences are small enough that jiji ,,sin θθ = . 
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 The Objective Function for the STEP problem is defined as the sum of the 

investment costs of new circuits and the penalty for load shedding. The GA 

implemented in this study uses a simplified version of this objective function, 

computed only as the investment cost for the new lines. Therefore, the objective 

function for this study can be put as: 

∑
∈

⋅=
Aji

jiji ncz
,

,,]min[ , (1) 

where A is the set of right-of-ways (undirected arcs in the associated graph), jic ,  is 

the cost of the candidate circuit i-j and jin ,  is the number of circuits to be added to 

the right-of-way i-j. 

 The proposed approach is to compute a differentiated cost for an existing 

line and a non-existing one, as building a new line from scratch is much more 

expensive than adding a new circuit to an existing line.  

 Moreover, it is hard to asses from the beginning the cost of each line or 

circuit. This approach uses a cost per kilometre ( jicpk , ) and the distances between 

the network nodes ( jil , ), which are more easily obtained in practice. 

 Under these considerations, the objective function for the STEP is defined 

as: 

∑
∈

⋅⋅=
Aji

jijiji cpklnz
,

,,,]min[ , (2) 

 

 The above objective function represents the investment cost for the new 

lines, but some constraints must be satisfied by the solutions, in order to ensure 

the feasibility and stability of the reinforced network. Each planner uses his own 

set of constraints, and the ones used in this study are as follows: 

 

dgfS =+⋅ , (3) 
max

,

0

,,, )( jijijiji fnnf ⋅+≤ , (4) 

max0 ii gg ≤≤ , (5) 
max

,,0 jiji nn ≤≤ , (6) 

 

where     

S - the node-branch incidence matrix of the system; 

 f - a vector with elements fij; 

fi,j - the power flow; 
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ni,j - the number of circuits added to the right-of-way i-j; 

ni,j
0
 - the number of circuits in the original base system; 

g - a vector with elements gk (generation in bus k) with a maximum value of max

ig ; 

d – the demand vector; 
max

, jif - the corresponding maximum power flow in the right-of-way i-j; 

max

, jin - the maximum number of circuits that can be added in the right-of-way i-j. 

3. Problem Modelling With Genetic Algorithm 

Genetic Algorithms are a way of solving problems by mimicking the 

mechanism of evolution as found in natural processes. They use the same 

principles of selection, recombination and mutation to evolve a set of solutions 

towards a “best” one and follow the general algorithm [2]: 

 
t := 0; 

Compute initial population B0 = (b1,0 . . ., bm,0); 

WHILE stopping condition not fulfilled DO 

BEGIN 
FOR i := 1 TO m DO 

select an individual bi,t+1 from Bt; 

FOR i := 1 TO m − 1 STEP 2 DO 

IF Random[0, 1] ≤ pC THEN 

cross bi,t+1 with bi+1,t+1; 

FOR i := 1 TO m DO 

eventually mutate bi,t+1; 

t := t + 1 

END 

 

Before using any of the GA models, the problem must be represented in a 

suitable format that allows the application of genetic operators. The GAs work by 

maximizing a single variable, the fitness function. Hence, the objective function 

and some of the constraints of the TNEP problem must be transformed into some 

measure of fitness.  

Encodings. The first feature that should be defined is the type of 

representation to be used, so that an individual represents one and only one of the 

candidate solutions. The proposed encoding method for this problem is assigning 

one gene for each right-of-way of the power system, that is, for each branch in the 

associated graph. A chromosome is, therefore, a vector containing all the 

additions. The alleles (numerical values of the genes) correspond to each branch 

and are equal to zero if no additions are necessary, or a number from 1 to max

, jin if 
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new circuits should be installed. The size of an individual (number of genes) is 

therefore equal to the number of branches in the network (already existing or not).  

 This representation gives the chromosome a specific meaning for each 

gene, as shown in Figure 1, for a 4-bus network.  

 

1-2 1-3 1-4 2-3 2-4 3-4 

0 0 2 0 1 0 
Figure 1. Chromosome representation for a 4-bus network.  

 

 This solution expresses the fact that two new circuits are to be added to 

line 1-4 and one to the line 2-4. 

Fitness Function. This function is responsible for measuring the quality of 

chromosomes and it is closely related to the objective function. The objective 

function for TNEP in this paper is computed as the investment costs for the new 

lines/circuits under the system constraints. The constraints of this particular 

problem do not explicitly contain the variables (the genes in this case) and 

therefore the effect of the constraints must be included in the value of the fitness 

function. The constraints are checked separately and the violations are handled 

using a penalty function approach. The assessed violations represent the 

unfeasibility of the current solution and penalty terms are incorporated into the 

fitness function in order to increase its value for unfeasible individuals (because 

this is a minimization problem), accordingly to the magnitude of the violations. 

The overall fitness function designed during this study is: 

∑∑ ∑
=∈ =

⋅+⋅+⋅⋅=
n

k

k

Aji

nr

i

ijijiji ratebalcpklnxf
1, 1

,,,)( ζξ , (7) 

where the first term is the objective function and the following are the penalty 

functions. 
ibal  is a factor equal to 0 if the power balance constraint at bus i is not 

violated and 1 otherwise. The sum of these violations represents the total number 

of buses in the network that do not follow constraint (3) and it is multiplied by a 

penalty factor meant to increase the fitness function and therefore to discard the 

unfeasible solution. The last sum in the fitness function represents the total 

number of violations of constraints (4) and it is also multiplied by a cost factor. 

The last two sums in this fitness function are a measure of unfeasibility for each 

candidate solution x. 

  Selection Methods. The selection methods specify how the genetic 

algorithm chooses parents for the next generation. In this study, two selection 

methods were tested. The first method was Roulette Wheel Selection, which 

chooses parents by simulating a roulette wheel with different sized slots, 

proportional to the individuals’ fitness. The second method tested was 

Tournament Selection and it proved to work better for the STEP problem. Each 
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parent is chosen as the best individual from a random selection of k individuals, 

where k is a preset number. 

Crossover Mechanism. The one – point crossover mechanism was tested 

for the STEP problem in this study, which exchanges the genetic information 

found after a random position in the two selected parents. The crossover is applied 

in each successive generation with a certain probability, known as the crossover 

fraction or rate. A large crossover rate decreases the population diversity, but in 

the STEP problem a higher exchange of genetic material is needed. The planner 

has to compromise between these issues and select an optimal crossover rate for 

each problem at hand.  

Mutation Mechanisms. This mechanism is very important from the genetic 

diversity point of view, and it prevents landing a local, sub-optimum solution. The 

mutation rate is highly connected with the crossover fraction. Two mutation 

mechanisms were tested: uniform and adaptive feasible. The adaptive feasible 

mutation mechanism showed better results for this particular problem. 

Initial Population. Genetic Algorithms are theoretically able to find global 

optimum solutions, but the initial population must contain individuals with good 

genetic material for the problem at hand. The most common construction method 

for the initial population is to randomly generate suitable individuals. Several 

efficient methods for creating the initial population have been reported [3, 4]. This 

paper uses an initial population randomly generated. The unfeasible solutions are 

discarded by penalizing the fitness function. 

4. Case Study and Results 

The applicability of GAs for STEP was tested on Garver’s 6-bus system, 

having 15 candidate branches, a total demand of 760 MW and a maximum 

number of circuits on a branch equal to 4. The initial topology and network data 

can be found in [5]. 

The optimal expansion plans reported in [6-8] have an associate 

investment cost z=200,000 USD and involve adding the following lines: 46,2 =n , 

15,3 =n  and 26,4 =n . 

The proposed GA generated a solution with this investment cost in 9.2 

seconds, in average for 10 runs, with a population of 30 individuals and parents 

selection by tournament with k=2, for a crossover rate of 0,8.  

The computer program generates multiple scenarios simultaneously at 

each run. For a number of scenarios to be generated equal to 3 and the above set 

parameters, the GA program resulted in one optimal scheme and two suboptimal 

ones, presented in Table 1 and shown in Figure 2(a) and 2(b-c), respectively. The 

representation of the optimal solution also contains the power flows. 
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Table 1. 

Optimal and suboptimal solutions obtained for Garver’s network 

Added Circuits 
No. 

1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 

Inv. Cost z 

[
310 USD] 

See 

Fig. 2 

1 0 0 0 0 0 0 0 0 3 0 1 0 0 3 0 200 a 

2 0 0 0 0 0 1 0 0 3 0 1 0 0 3 0 220 b 

3 0 0 0 0 0 0 0 0 3 0 2 0 0 3 0 220 c 

 

For space reasons, only a few scenarios are represented, but the number of 

scenarios generated within this interval of investment costs is much bigger.  

The proposed method approaches the environmental issues only from a 

Boolean perspective. The user is asked to input the paths that do not support 

further expansions, and the program automatically discards of these when 

encountered within a solution.  

 

   
a. (z=200) b. (z=220) c. (z=220) 

Figure 2. Multiple scenarios for the TNEP, generated by a GA computer program 

 

Figure 3 shows the performance of the GA for one of the runs. The initial 

population was randomly generated and its fitness is above 2000, which suggests 

that the fitness has been penalized. 

 

 
Figure 3. GA run performance 
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The graph shows a good convergence of the fitness value with the 

generations. It can be observed that the algorithm could have been stopped even 

earlier, after about 17-18 generations, as no improvements have been made 

starting with generation 12. Both the best fitness value and the mean value drop 

with generations, which shows that GAs are suitable for solving the transmission 

network expansion planning problem. Even though the maximum number of 

generations has not been reached, the algorithm stopped because the maximum 

stall generation number has been encountered. 

6. Conclusions 

An application of genetic algorithms was presented for finding a 

transmission network’s lowest cost expansion. Results show that the proposed 

approach is a suitable and promising technique in solving the STEP problem. 

The best solution found by GAs and computational time can be 

improved by tuning the parameters (crossover rate, population size and others). 

 Because of the flexibility of Genetic Algorithms, further modelling 

requirements can be included in the fitness function to further improve the 

transmission design. For example, some of the initial simplifications can be 

eluded from the design, transforming the problem into a more realistic one. 
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