
U. P. B. Sci. Bull., Series C, Vol. 69, No.4, 2007                                                    ISSN 1454-234x 

 

 

3rd International Conference on Energy and Environment 

22-23 November 2007, Bucharest, Romania 

OPTIMAL RECONFIGURATION OF THE DISTRIBUTION 

NETWORKS IN UNCERTAINTY CONDITIONS 

Gheorghe CARTINA
1
, Gheorghe GRIGORAS

2
 

 A method based on the hierarchic clustering techniques, conjunctively with fuzzy 

modeling, is presented in this paper for improving of the fuzzy models and the estimation of 

the power losses. Numerical results obtained with many tests demonstrate the ability of the 

improved fuzzy models to overcome difficult aspects encountered in optimal reconfiguration 

process of the large distribution networks. 
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1. Introduction 

 A policy for the reduction of losses can contain short and long term 

actions. The some short-term measures are following [3, 7, 10]: identification of 

the weakest areas in distribution network and improve them, reduction the length 

of the distribution feeders by relocation of distribution substation/installations of 

additional transformers, installation of shunt capacitors, etc.  

 Also, the some long term measures are following: mapping of complete 

distribution feeders clearly depicting the various parameters such as nominal 

voltage, the length of the cables, installed transformation capacity, the number of 

the transformation points, the circuit type (underground, aerial, mixed), load being 

served, etc, compilation of data regarding existing loads, operations conditions, 

forecast of expected loads etc, estimation of the financial requirements for 

implementation of the different phases of system improvement works. 

 The aim of this paper is to describe an approach to evaluate the levels of 

the power losses considering the loads as fuzzy numbers, with a design to 

determining the minimum losses configuration of radial distribution networks. 

2. Clustering analysis 

 Data analysis underlies many computing applications, either in a design 

phase or as part of their on-line operations. Cluster analysis is the organization of 

a collection of patterns (usually represented as a vector of measurements or a 

point in a multidimensional space) into clusters based on similarity.  
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 Clustering is the technique of grouping rows together that share similar 

values across a number of variables. There are two major methods of clustering: 

hierarchical clustering and k-means clustering. 

 In hierarchical clustering the data are not partitioned into a particular 

cluster in a single step. Instead, a series of partitions takes place, which may run 

from a single cluster containing all objects to n clusters each containing a single 

object.  Hierarchical clustering is subdivided into agglomerative methods, which 

proceed by series of fusions of the n objects into groups, and divisive methods, 

which separate n objects successively into finer groupings. Agglomerative 

techniques are more commonly used. Hierarchical clustering may be represented 

by a two dimensional diagram known as dendrogram which illustrates the fusion 

or divisions made at each successive stage of analysis. Hierachical clustering is 

appropriate for small tables, up to several hundred rows. Several agglomerative 

techniques are single linkage clustering, complete linkage clustering, average 

linkage clustering, centroid method and Ward’s hierarchical clustering method.  

 Differences between methods arise because of the different ways of 

defining distance (or similarity) between clusters.  

 K-means is one of the simplest unsupervised learning algorithms that solve 

the well known clustering problem. The procedure follows a simple and easy way 

to classify a given data set through a certain number of clusters (assume k 

clusters) fixed a priori. The main idea is to define k centroids, one for each cluster. 

These centroids shoud be placed in a cunning way because of different location 

causes different result. So, the better choice is to place them as much as possible 

far away from each other. The next step is to take each point belonging to a given 

data set and associate it to the nearest centroid. When no point is pending, the first 

step is completed and an early groupage is done. At this point we need to re-

calculate k new centroids as barycenters of the clusters resulting from the previous 

step. After we have these k new centroids, a new binding has to be done between 

the same data set points and the nearest new centroid. A loop has been generated. 

As a result of this loop we may notice that the k centroids change their location 

step by step until no more changes are done. Finally, these algorithms aim at 

minimizing an objective function, in this case a squared error function.  

3. Characterizing of the distribution feeders by clustering techniques 

 The data about the primary characteristics of the feeders were updated and 

prepared for the grouping process, including the selection of the variables for a 

total of 44 feeders belonging to the electrical utility, Fig. 1. 

 In function of the primary characteristics (the total length of the 

distribution feeders and the installed power of the transformers), the feeders are 
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divided in representative groups, using a statistical clustering method (centroid 

method). 

 

 
Fig. 1. Simplified representation of a feeder 

 

 In this case, the installed power of the feeder is defined as the sum of the 

nominal power of the transformers served by the respective feeder: 
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where: d
iS  – installed power of the feeder d, d

njS – nominal power of a transformer 

j served by the feeder d, PTN – total number of the transformers served by the 

feeder d, dN  – total number of feeders in the data base (Nd = 44, in this case). 

 Thus, the eight groups of the distribution feeders were determined, Fig. 2 

[2, 3, 7]. 

                           
Fig. 2. Result of the grouping of the feeders 

 
 In the Table 1 are indicated the average values and the standard deviations 

corresponding the total length (L) and the installed power (Si), for the eight groups 

of feeders. 

Using the fuzzy modeling based on the clustering techniques, [2, 3] we defined 

the following linguistic categories: for the length (L), Low (LL), Medium (ML) 

and High (HL), and for the installed power (Si), Low (LS), Medium (MS) and 
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High (HS). Thus each group will be characterized by a linguistic category of 

these primary variables, Fig. 3 and Fig. 4. 
Table 1 

The average values and the standard deviations for L and Si 

Length (L) 

[km] 

Installed Power (Si) 

[kVA] Group 

mL dL mSi dSi 

G1 1.492 0.501 1975 452.33 

G2 1.765 0.139 3447.5 239.08 

G3 3.289 0.202 2590 259.33 

G4 3.077 0.169 4535 255.93 

G5 4.214 0.248 3870 575.95 

G6 5.427 0.069 3477.5 239.08 

G7 3.568 0.344 5805 275.77 

G8 5.537 0.343 6577.5 327.65 

   
          Fig. 3. µ (L) membership functions                      Fig. 4. µ (Si) membership functions 

 

 For example, the first group, G1, is characterized by LL, for length, and 

LS, for installed power. 

 4. Modeling of the distribution network loads using fuzzy techniques 

 The main difficulties in modeling of loads at receiving buses in 

distribution systems result from the random nature of loads, diversification of load 

shapes on different parts of the systems, the deficiency of measured data and the 

fragmentary and uncertain character of information on loads and customers.  

  The fuzzy models can be used to represent the uncertain knowledge about 

load behavior either for active and reactive powers. If for some substations there 

are sufficient database, for a good forecasting of the load, for the other substations  

the forecasting of the load can be make using the correlation study [1 - 3].     

  For modeling of the loads in the distribution systems, two fuzzy variables 

are considered: the loading factor kI (%) and power factor cosϕ, so that the fuzzy 

representation of the active and reactive powers result from relations [1 - 3, 7]: 
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    ϕ⋅=ϕ⋅⋅= tan,cos
100

PQS
kI

P n                                 (2) 

where Sn [kVA] is the nominal power of the distribution transformer from the 

distribution substations. 

 The fuzzy variables, kI and cosϕ, are associated to trapezoidal membership 

functions. The two fuzzy variables must be correlated, just like that fuzzy 

variables P and cosϕ. 

 Because the most electric utilities have not historical records of the loads, 

in the distribution substations, linguistic categories are used. Therefore, the 

variables kI and cosϕ were divided into five linguistic categories and the active 

losses will be calculated for each one of these, [1 - 3, 7]: 

 

• Very Small – VS:   kI – VS   and cosϕ – VS;   

• Small – S:               kI – S      and cosϕ – S; 

• Medium – M:         kI – M     and cosϕ – M;   

• High – H:                kI – H     and cosϕ – H; 

• Very High – VH:    kI – VH  and cosϕ – VH. 

        
   Table 2 

Loading levels as function of kI and cosφ 

x x Linguistic 

Declaration kI(%) cos ϕ 

Linguistic 

Declaration kI(%) cos ϕ 

x1 10 0.75 x3 55 0.87 

x2 10 0.77 
M 

x4 65 0.89 

x3 15 0.79 x1 55 0.87 
VS 

x4 25 0.81 x2 65 0.89 

x1 15 0.79 x3 75 0.91 

x2 25 0.81 

H 

x4 85 0.93 

x3 35 0.83 x1 75 0.91 
S 

x4 45 0.85 x2 85 0.93 

x1 35 0.83 x3 95 0.95 
M 

x2 45 0.85 

VH 

x4 95 0.97 

 

 For the loading levels considered in Table 2, the statistical characteristics 

for the power losses were calculated. Using these information, for the power 

losses (dP) five linguistic categories were defined, applying the fuzzy modeling 

based on the clustering techniques, Fig. 5: Very Small – VS_dP (6 – 20 kW), 

Small – S_dP (15 – 35 kW), Medium – M_dP (35 – 60kW), High – H_dP (55 – 

105 kW) and Very High – VH_dP (95 – 160 kW). 

 Using the fuzzy rules with respect to the linguistic description of the 

inputs, (length, installed power and loading level), it is possible to evaluate the 

power losses [1 - 3, 7]. 
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Fig. 5. Membership functions for dP 

  5.  Optimal reconfiguration of the distribution networks 

 Distribution systems should operated at minimum cost, subject to a 

number of constraints: radial configuration, all loads are served, lines, 

transformers, and other equipment operate within current capacity limits, 

overcurrent protective devices are coordinated and voltage magnitudes are within 

limits. 

 Distribution feeders are usually radial to simplify overcurrent protection. 

To help restore power to customers following a fault, most feeders have several 

interconnecting tie switches to neighboring feeders.  Configuration alternations 

may be performed by changing the status of network switches (open/close), in 

such a way that radiallity is always re-established after the operations are 

completed.  

 Network reconfiguration can also be used in planning studies, in order to 

determine the optimal configuration of the network during the overall planning 

procedure.  

Since a typical distribution system may have hundreds of switches, a 

combinatorial analysis of all possible options is not a practical solution. 

Therefore, most of the algorithms in literature are based on heuristic search 

techniques, using either analytical or knowledge-based engines. 

  The proposed solution method starts with a meshed distribution network 

obtained by considering all switches closed. Then, the switches are opened 

successively to eliminate the loops. The opening criterion is based on minimum 

total power loss increase, and is determined using a power-flow program. A 

refinement on the above procedure is made using the branch exchange technique, 

involving neighboring open switches. 

These methods allow finding a solution after a relatively small number of 

searches. The improved configuration can be found through branch exchange so 
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that the radial structure is kept and the active losses are diminished. This method 

is known as the “branch exchange” method [1, 11-13]. 

 The algorithm starts with the calculation of the active losses for the initial 

configuration (meshed). The next step is to generate all possible configurations for 

the network by permuting each branch of the network. The one with the least 

difference between it and the initial configuration is selected (if such a 

configuration exists). This becomes the next variant and the network is 

reconfigured. The final solution is obtained when the current schema can’t be 

improved any more [16].  

 For example, in Fig. 6 a comparison between the average power losses in 

the cable and the average power losses in the feeders, for the group G6, as 

function of loading levels it is presented. In Fig. 7 it is presented the influence of 

the sectors on the average power losses in cable, for each feeder from G6. 
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Fig.  6. Average power losses in the cable               Fig.7. Power losses for feeders of the group G6 

             vs. feeders, group G6            

Table 3  

Power losses by sector with branch exchange for Feeder 22 (group G6) 

dPsector [%dPcable] 

Case a Case b Case c 
Sector Feeder 22 

dPcable= 

13.1975kW 

Feeder 22-Sector 9 

dPcable=8.7325kW 

Feeder 22+Sector 9 

dPcable=18.83kW 

1 65.3798 68.9693 62.202 

2 13.0839 13.3781 12.727 

3 3.4002 3.2407 3.4678 

4 8.6834 7.7984 9.2103 

5 6.5599 5.1588 7.5292 

6 1.3733 0.953335 1.6901 

7 0.6194 0.3492 0.8311 

8 0.4622 0.13741 0.7873 

9 0.4508  1.2453 

10   0.3159 
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 For the feeder 22 (case a), of the group G6, we considered another two 

cases, case b: sector 9 – disconnected and case c: sector 10 (identical with sector 

9) – connected, and we calculated the power losses for these cases and compared 

them. The results are shown in Table 3.  

 6. Conclusions 

 By using the heuristic “branch exchange” method, the area of studied 

variants is narrowed. In addition, the method was improved by considering the 

loads as fuzzy numbers that reflects better the vagueness about the power demand 

in distribution networks. 
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