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This paper presents the application and comparison of classical and heuristic 

methods which solve the economic dispatch (ED) problem, such as the Lagrange 

multipliers method (LM), genetic algorithm (GA) and simulated annealing (SA). An 

analytical and empirical comparison among these methods is performed with 

consideration to the problem formulation and its complexity and ruggedness. In 

addition, we propose an improved genetic algorithm with ant strategy (GAAPI) 

method in order to make the search more robust for economic dispatch problems 

that involve nonsmooth cost functions. The GAAPI method involves a multi-agent 

search in the solution space inspired from ant colony optimization techniques. For 

large systems, where many heuristic algorithms are time consuming, we propose a 

nearest neighbour (NNei) method to generate the starting solution for the GAAPI 

algorithm and to obtain near optimum global solution with a small computational 

time.  
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1. Introduction 

The optimal allocation of the load demand to the committed generating 
units is a critical aspect of power system optimization in terms of the economics 
of each electric utility. This process, termed economic dispatch (ED), is often a 
computationally intensive task especially when the generating units in the system 
are characterized by nonsmooth cost functions. The economic dispatch problem is 
solved as either a minimization problem (minimize the fuel cost) or as a problem 
of profit maximization (especially in deregulated energy market environments). 
The power system dispatcher needs to take into consideration system parameters 
such as the heat rate curves of generators, minimum and maximum generation 
limits, and ramp rate limits to obtain the most economic schedule of generation. 
Further, constraints such as transmission line limits and power system spinning 
reserve have to be continuously respected.  
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Traditionally, the economic dispatch problem is solved using methods 
based on LM, gradient methods [1-2], or dynamic programming (DP) [3]. These 
classical dispatch algorithms that use Lagrangian multipliers or gradient methods 
require monotonically increasing incremental cost curves. Unfortunately, the 
input-output characteristics of real generating units are highly nonlinear because 
of factors such as valve-point loading and rate limits. Despite the fact that DP 
does not impose any restrictions on the cost curve shape, this method suffers from 
the “curse of dimensionality” [4].   

With the advent of deregulated power markets the problem of ED became 
more complex. The cost function is no longer smooth, market rules need to be 
considered and interconnection constraints have to be respected. Therefore, 
intelligent techniques are required to overcome the obstacles of the increased 
complexity and nonlinearity. In this respect, recent years brought about an 
increased research activity on economic dispatch methods based on intelligent 
optimization techniques such as neural networks, genetic algorithms [5-7], 
evolutionary based methods [8-9], or simulated annealing [10]. These intelligent-
based methods improve the previous solution techniques by searching for the 
global minimum of the cost function. The first approaches in applying intelligent 
based algorithms to solve the economic dispatch problem used the classical 
formulation of the problem with a quadratic cost function without losses or with 
constant losses [11-12]. 

Heuristic methods such as GAs and SA do not guarantee to always 
converge to the global optimal solution, but they often provide fast and reasonable 
solutions (suboptimal or near globally optimal), especially for small problems. In 
this paper, an improved genetic algorithm with ant colony strategy (GAAPI) 
method is proposed. The method involves a multi-agent search and aims to a 
robust, guided search in the solution space of the nonsmooth ED problem. The 
test systems used in this study are: a three generator test system [1], a modified 
IEEE 30-bus (6 generators) test system and a modified IEEE 118-bus (40 
generators) test system [13]. 

2. Problem description 

In this work, the ED problem is to minimize the cost of generation 
(objective function). Further, a number of system constraints such as the balance 
constraint, ramp rate limits and transmission system limits should be respected at 
all times.  
 A. Objective function:  
 The objective function in the ED problem can be either smooth or 
nonsmooth. A smooth objective function is a quadratic approximation of the 
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incremental cost curves that could include the operation maintenance cost and is 
of the form,  
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A nonsmooth function incorporates a number of extra factors such as the valve 
point loading effect, multiple fuel types, and prohibited operating zones and is of 
the form, 
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Terms ai, bi, ci ei, fi, are the cost function coefficients (constants), and Pi is the 
output power of unit i. 
 

 B. Constraints: 
 The constraints can be evaluated as either hard constraints or soft 

constraints. Hard constraints are the ones that must be respected continuously in 
order to keep the system in a safe operating state. Soft constraints are constraints 
that are desirable to be respected but which may or may not affect the system 
performance (such as emission constraints and spinning reserve constraints).  
 The hard constraints considered in this paper include the balance 
constraint (with and without losses), 
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generation limit constraints,  
minmax

iii PPP ≤≤ , (4) 

transmission constraints (security limits and losses), and ramp rate limits. PD is the 
load power demand, PL are the transmission losses and Pi

min, Pi
max are the 

minimum and maximum output powers of unit i respectively. 
 Transmission power losses can be computed through a power flow 
computation, but a common practice is to express the total transmission losses as a 
quadratic function of the power outputs of generating units either through Kron’s 

loss formula, or through a simplified formula [2]. The B coefficients are assumed 
to be constant, and reasonable accuracy can be expected when the actual operating 
conditions are close to the case at which these coefficients where computed. 

3. Description and development of the proposed method 

The main idea behind GAs is to improve a set of candidate solutions for 
the problem by using several genetic operators inspired from genetic evolution 
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mechanisms observed in real life. Genetic operators are the variation mechanisms 
that generate new candidate solutions, similar to the parents (solutions from a 
previous generation), but including some differences. Usually, genetic operators 
such as: selection, crossover and mutation are in charge of this task. The selection 
operator makes sure that the best member from a population survives.  Crossover 
takes two parents and mixes them up with a given probability so that new 
individuals are generated. Mutation takes an individual and randomly changes a 
part of it with a certain probability.  
 Pachycondyla apicalis ants have been studied in the Mexican tropical 
forest near the Guatemalan border. Colonies of these ants comprise around 20 to 
100 ants. The foraging strategy of such ants can be characterized as follows. First, 
these ants create their hunting sites which are distributed relatively uniformly 
around their nest within a radius of approximately 10 m. In this way, using a small 
mosaic of areas, the ants cover a rather large region around the nest. Second, the 
ants will intensify their searches around some selected sites for prey. In this 
foraging process, these ants communicate with each other using visual landmarks 
rather than pheromone trails. After capturing their prey, the ants will move to a 
new nest based on a recruitment mechanism called “tandem running” to begin a 
new cycle of foraging. Based on the natural behaviour of pachycondyla apicalis, 
Monmarche et al. proposed an API algorithm (short for apicalis) for the solution 
of optimization problems [14]. However, further research shows that API has poor 
use of the memory that generally characterizes ant colony systems [15].  
 To eliminate the shortcomings and the inadequate robustness of the global 
search ability of the API algorithm, a GAAPI algorithm that incorporates some 
favourable features of API and GA algorithms is proposed in this paper. To 
facilitate the understanding and description of the method, the steps of the 
proposed algorithm are outlined in Table 1, and described below. 
 1) Generation of New Nest: After initialization, only the best solution 
found since the last nest move has the opportunity to be selected as a new nest to 
start the next iteration. The “hill climb” property is not very strong in this case, so 
the entrapment in local minima is avoided. 
 2) Exploitation: The main differences of the proposed GAAPI and the API 
algorithm lie in the following aspects: initially, each ant checks its memory. If the 
number of hunting sites in its memory is less than a predefined number, it will 
generate a new one in the small neighbourhood of the current ant center, save it to 
its memory, and use it as the next hunting site. Otherwise, one of its memorized 
sites is selected as the hunting site. The ant then performs a local search around 
the neighbourhood of this hunting site. If this local exploitation is successful, the 
ant will repeat its exploration around the site until an unsuccessful search occurs; 
otherwise, the ant will select an alternative one among its memorized sites. This 
process will be repeated until a termination criterion is satisfied. The termination 
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criterion used in this phase is that the procedure will stop automatically once the 
number of successive unsuccessful explorations reaches a predefined value or 
there is no improvement after a number of iterations.  

3) Information Sharing: As described previously, the available API 
algorithm makes poor use of the memory that generally characterizes ant colony 
systems. To compensate for such a shortcoming in an API algorithm, an 
information-sharing mechanism is proposed so as to increase the use of the 
information gathered from the latest searched solutions, and to speed up the 
solution process. In essence, it is proposed that after each ant has extensively 
exploited a hunting site, one member of the memorized sites for every ant will be 
replaced by the solution that survived from a GA that has as initial population the 
best site of each ant in this cycle. For the selection of the replaced sites, the 
roulette wheel selection scheme is used [6]. 

 
 
 For the economic dispatch solution of the IEEE 118 bus test system, a 
NNei strategy is added to the proposed GAAPI method. The NNei strategy is used 
to find an initial nest center using the solution obtained from LM for the quadratic 
part of the cost function. This reduces the computational time of the search 

Table 1 

GAAPI algorithm 

 
1) Initialization: set the algorithm parameters.  
2) Generation of new nest (exploration):  Choose randomly the initial nest location   
3) Exploitation 
 3.1) Search intensification:  
   while NestPatience before moving 
          for each ant ai, 
              while AntPatience 
                    if ai has less than p hunting sites in its memory, then create a new site in the   

neighborhood of N and exploit this new site; 
      else if the previous site exploitation is successful, exploit the same site again; 

                           else explore a randomly selected site (among its p sites in memory). 

                            endif 

                     endif 
                3.2. Remove from ants memories all sites that have been explored more 
                 than Plocal(ai) consecutive times 
                3.3. Information sharing: 

  Probabilistically replace a site in the memory of the ant  
endwhile AntPatience  

endfor 

GA to determine new Ant Centers  

endwhile NestPatience 

             3.4. Nest movement: if more that NestPatience iterations have been performed then 
change    the nest  location and reset the memories of all ants 

  4) Termination test: Go to (3) or stop if a stopping criterion is satisfied 
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procedure. The method incorporating the additional NNei strategy is termed Fast-
GAAPI method. 
 

4. Test cases and analysis of results 

The algorithms (LM, SA, GA and GAAPI) were implemented on a 3.6 
GHz personal computer using MATLAB 7.4. In order to verify and compare the 
performance of each algorithm in practical applications, three sample networks 
having nonconvex solution spaces are used as test systems. For this system the 
transmission losses are calculated by Kron’s loss formula. 

 
A. 3 generator test system 

The first test system consists of three generators with nonconvex cost of 
generation and having a load demand of 850 MW [1], [4]. Table 2 shows the best 
generation dispatch and the minimum cost achieved for the three test methods 
applied to the nonconvex system. The minimum cost is achieved using the 
GAAPI method that was proposed in this paper. SA was the fastest among the 
three methods and GA was the slowest.  

Table 2 

Test case results for the 3-generator system 

B. 6 generator test system 
The second test system consists of six generators and a load demand of 

1263 MW [4]. The analysis is given for two cases: when the generation cost 
function is convex (Table 3) and for the case when the generation cost function is 
nonconvex (Table 4). For both convex and nonconvex cost functions the 
minimum generation cost is achieved using the GAAPI method as illustrated in 
Tables 3 and 4.  

C. 40 generator test system 
The third test system consists of forty generators with a nonconvex cost of 

generation and having a load demand of 10500 MW [16]. Table 5 shows the 
results obtained using the optimization methods. In this case, the fast genetic 
algorithm with API strategy (Fast-GAAPI) is used, to speed up the optimization 
process. This method resulted in the best solution among the methods tested. The 

Unit power output [MW] SA GA GAAPI 

P1 365.0082 402.828539 393.1699  
P2 129.5031 196.438952 122.2264  
P3 355.4914 250.732522 334.6037 

Total generation [MW] 850.0027 850.000013 850.000 

Total generation cost [$/h] 8409.6766 8235.1542 8234.0838 

CPU time [sec] 47.96875 421.5312 298.0781 
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Fast-GAAPI algorithm is approximately 2.6 times faster than the GA algorithm 
and 2.3 times faster than the GAAPI method. 

Table 3 
Test case results for the 6-generator system with convex cost functions 

Unit power output [MW] LM SA GA GAAPI 

P1 448.5503 448.5501   441.9695 449.0586 
P2 174.0915 174.0913 178.9703 140.0420 
P3 264.2750 264.2748 267.5925 264.8572 
P4 139.9208 139.9206  136.0149 138.7214 
P5 166.2886 166.2884   160.0929 166.2875 
P6 87.9659 87.9657 96.4542 88.3631 

Total generation [MW] 1281.092 1281.0909 1281.094 1281.0485 

Losses [MW] 18.0924 18.0910 18.0946 18.0485 

Total generation cost [$/h] 15518.19    15519.18305 15520.03 15518.0786 

CPU time [sec] - 39.9687 538.125 177.453 

Table 4 
Test case results for the 6-generator system with nonconvex cost functions 

Unit power output [MW] SA GA GAAPI 

P1 448.5503 447.056645 435.4418 
P2 174.0914 176.433270 173.3131    
P3 264.2750 289.671932 261.6615 
P4 139.9208 138.224723 138.4678   
P5 166.2886 144.161847       173.5029    
P6 87.9659 85.520172 98.7820 

Total generation [MW] 1281.0922 1281.3700 1281.1694 

Losses [MW] 18.0922 18.3700 18.1694 

Total generation cost [$/h] 15560.30409 15563.500166 15521.0549 

CPU time [sec] 37.4375 410.593 200.2187 

Table 5 

Test case results for the 40-generator system with nonconvex cost functions 

Method SA GA GAAPI FGAAPI  

Total generation [MW] 10499.99 10499.99 10500.00 10500.00 

Total generation cost [$/h] 128227.35 135 198,50 125770.85 12535.96151 

CPU time [sec] 23.964 756.9 658.7 284.07812 

5. Conclusion 

 A GAAPI method is developed and integrated with the API and GA 
procedures in order to form a powerful optimization tool for the ED problem with 
a nonconvex cost function. Three other methods (LM, SA, and GA) were 
implemented and tested by three sample networks having nonconvex solution 
spaces in order to compare the performance of existing methods to the 
performance of the proposed algorithm. It was shown that in the case where the 
cost functions are smooth, the GAAPI method and the LM method have 
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comparable results and are better than the SA and GA methods in terms of the 
cost of generation. In the case of the nonsmooth cost functions, the proposed 
GAAPI method gives better results than the SA and GA methods. It was also 
shown that for the economic dispatch solution of the modified IEEE 118 bus test 
system, the computational time is significantly reduced when the NNei strategy is 
added to the proposed GAAPI method. 
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