NATIONAL STANDARDIZATION IN EUROPEAN FRAMEWORK – TEHNICAL SUPPORT FOR DEVELOPING WIND POWER GENERATION SYSTEMS

Tatiana Scărlătescu¹, Viorel Ursu², Dan Ilie Teodoreanu² ¹ASRO, Bucharest, Romania ²ICPE SA, Bucharest, Romania

The standardization is recognized today as being the essential discipline for all economical agents. Twenty years ago the standardization was designated just for a few specialists. Today the companies have taken the standardization as a technical and commercial element and they are being conscient that they must play an active role in this field and they must be ready to accept the standardization that is made without their agreement. Three directions for standards development

Economical integration of Europe

The quick steps towards to economical integration and to the Commission CE decision, to give the standards an open value regarding the free movement of services and goods inside the EU led to the key role that the normative tool plays. The raising competition which they determine will lead to a greater development of the exchanges inside the Unique Market. These exchanges must be according to certain rules. The commission limited itself by setting up the objectives – essential requirements – leaving to the economical agents the possibility to specify the means of achieving those purposes.

Requirement for quality

In the '50, the requirement for quality has gained an increasing importance and is shown more and more as a determinant factor for quality. If today is easy to compare prices, it's much more difficult to compare levels of development. The existence of a quality reference system, unanimous recognized, represents a precious tool for clarifying problems. This is the exact role of the standards.

Technical and technological evolution

Another factor for the development of the standardization is the appearance of new techniques and technologies. All the techniques which involve information, the work and transmitting of the info

involve setting up a network. Regarding other techniques based upon networks, the informatical development depends on the acceptance of the users which are regarding common rules which facilitate interoperability. In a continuous developing economy, these techniques play an important role, fact shown by the expansion of the Electronical Data Interchange (EDI).

CENELEC's mission is to prepare voluntary electrotechnical standards that help develop the Single European Market/European Economic Area for electrical and electronic goods and services removing barriers to trade, creating new markets and cutting compliance costs.

For doing this, CENELEC is strongly committed to:

 \cdot Satisfy the needs of the European industry and other stakeholders in the market place in the areas of standardisation and conformity assessment in the fields of electricity, electronics and associated technologies.

• Lead the improvement of all aspects of product quality, product safety, service quality and service safety in the fields of electricity, electronics and associated technologies, including protection of the environment, accessibility and innovation, and so to contribute to the welfare of society.

• Support IEC, the International Electrotechnical Commission, in achieving its mission: "To be globally recognised as the provider of standards and conformity assessment and related services needed to facilitate international trade in the fields of electricity, electronics and associated technologies. In addition to the regular standardisation work achieved by CENELEC since its foundation, a European Council Resolution of 7th May 1985 gave a new dimension to CENELEC's mission by recognising it as the Standardisation Body able to provide harmonised standards for the electrotechnical field under the New Approach. The 30 current CENELEC members are national organizations entrusted with electrotechnical standardization, recognized both at National and European level as being able to represent all standardization interests in their country. Only one organization per country may be member of CENELEC.

Romania is considered to have the highest wind energy potential in the South-East region. Its wind resources are well-documented, and there are a broad range of existing applications from small autonomous units for rural areas to large off-shore potential. There is 3 MW of current installed capacity, and the government has a target of 200 MW by 2010.

The techical support for developing of wind energy application, in the same time for small units and grid connected wind systems is provided by ASRO and Romanian Wind Turbine Tecnical Committee.

The <u>ASRO TCs are mirror committees</u> of the CEN, CENELEC, ETSI, ISO and IEC. Now there are 231 national technical committees. One or several European and/or International technical committees correspond to each of the national technical committees. For wind energy the national technical committee is TC 147 which corespond of TC IEC 88 -WIND TURBINE. The national programme of standardization 2007 which includes the importants standards for wind energy is showen in the following:

IEC Standards	European Standards	Romanian Standards
IEC 61400-1 (2005-08)	EN 61400-1: 2005	SR EN 61400-1:2006
Wind Turbine – Part 1:Design		Turbine eoliene. Partea 1:
requirements		Conditii de proiectare
IEC 61400-2 <u>2005)</u>	EN 61400-2: 2005	SR EN 61400-2:2006
Wind turbine generator systems		Turbine eoliene. Conditii de
- Part 2: 1:Design requirements		proiectare
for small wind turbines		ale turbinelor eoliene mici
IEC 61400-11 (2002-12)	EN 61400-11 1998	SR EN 61400-11:2001
c Acoustic noise measurement		Turbine eoliene. Partea 11:
techniques		Tehnici de
		masurare a zgomotului
IEC 61400-12-1 (2005)	EN 61400-12-1:2006	SR EN 61400-12-1:2006
Wind turbine generator systems		Turbine eoliene. Partea 12:
- Part 12: Wind turbine power		Tehnici de masurare a
performance testing		performantelor de putere
IEC/TS 61400-13 (2001-06)		
Wind turbine generator systems		
- Part 13: Measurement of		
mechanical loads		
IEC/TS 61400-14 (2005-03)		
Wind turbines - Part 14:		
Declaration of apparent sound		
power level and tonality values		
EC 61400-21 (2001-12)I	EN 61400-21:2001	SR EN 61400-21: 2003
Wind turbine generator systems		Turbine eoliene. Partea 21:
- Part 21: Measurement and		Masurarea si evaluarea
assessment of power quality		caracteristicilor de calitate ale
characteristics of grid connected		puterii turbinelor eoliene
wind turbines		conectate la o retea electrica

IEC/TS 61400-23 (2001-04)		SR IEC/TS 61400-23:2006
Wind turbine generator systems		Turbine eoliene. Partea 23:
- Part 23: Full-scale structural		Încercări structurale ale palelor
testing of rotor blades		
IEC/TR 61400-24 (2002-07)		SR IEC/TR 61400-24:200 <u>6</u>
Wind turbine generator systems		Turbine eoliene. Partea 24:
- Part 24: Lightning protection		Protecția împotriva trăsnetului
IEC 61400-25-1 (2006-12)	EN 61400-25-1:2007	
Communications for monitoring		
and control of wind power		
plants - Overall description of		
principles and models		
IEC 61400-25-2 (2006-12)	EN 61400-25-2:2007	
Communications for monitoring		
and control of wind power		
plants - Information models		
IEC 61400-25-3 (2006-12)	EN 61400-25-3:2007	
Communications for monitoring		
and control of wind power		
plants - Information exchange		
models		
IEC 61400-25-5 (2006-12)	EN 61400-25-5:2007	
Communications for monitoring		
and control of wind power		
plants - Conformance testing		
IEC WT 01 (2001-04)		
IEC System for Conformity		
Testing and Certification of		
Wind Turbines - Rules and		
procedures		
	EN 50308:2001	SR EN 50308:2004
	Wind turbines - Protective	Turbine eoliene. Măsuri
	measures -	protectoare.
	Requirements for design,	Prescripții pentru proiectare,
	operation and maintenance	exploatare și întreținere