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ON  THE  KINEMATIC  OF  THE  TRAVELER  WAVE  

Mircea Dimitrie CAZACU 1*, Dan Aurel MACHITA 2 

Starting from Gerstner’s potential of traveler wave and determining its 

constant as function of the wave height and length, as well as of the channel water 

depth, one calculates variations in time of the pressure of the bi-dimensional and 

unsteady motion of traveler wave for any point of the fixed trihedron. 

The obtained results have a great importance to establish the boundary 

conditions in the numerical solving of the shape-changing problem of the traveler 

wave in its propagation on an inclined bottom. 
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1. Gerstner’s wave potential as direct method in Hydrodynamics 
 

 In the present difficult struggle [1-6] against the beaches erosion on the 
Romanian seaside, the traveller wave potential, obtained by Gerstner in 1802 [7] 
has not only a  
 

           ( ) ( ) ( ), , sinX Y t F Y kX tΦ = ⋅ − ω ,                (1) 
 

theoretical, but also a practical importance for the study of sand particle motion. 
To verify the mass conservation equation, which gives to this velocity 

potential the quality to by an harmonic function 2 2X Y X Y
0U V′ ′ ′′ ′′+ = Φ + Φ = , 

Gerstner determined from the characteristic equation 2 2 0r k r k− = → = ± , 
associated to the Euler differential equation with constant coefficients 

( ) ( )2

2

Y
0F Y k F Y′′ − = , the general expression of the wave amplitude function 

( ) kY -kY
F Y Ae Be= + , in which he could determine one of the constant 

considering that on the channel bottom the vertical component V of the velocity 
must be zero 
 

   Y     η = Y-H 
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Fig. 1. The coordinate axis and the wave kinematics’ parameters. 
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( ) ( ) ( ) ( )YY=0 Y=0
sin sh sin 0V k A B kX t k C k Y kX t′= Φ = − − ω = − − ω = ,     (2) 

 

with  A = B , the Gerstner’s traveller wave potential taking the form 
 

( ) ( ) ( ), , ch sinX Y t C k Y kX tΦ = − ω .         (3) 

 

2. Bernoulli’s relation for the unsteady motion of ideal and heavy fluid 
 

From the two unsteady and non-rotational ( Y X 0U V′ ′− = ) motion equations 

of an ideal and heavy liquid 

{ }t X Y X X

1
0 U UU VU P VV¢ ¢ ¢ ¢ ¢= + + + ±

r
,                (4) 

{ }t X Y Y Y

1
g V UV VV P UU¢ ¢ ¢ ¢ ¢- = + + + ±

r
,                       (5) 

we obtain by differential addition and then their integration, with η = Y-H , the 
relation   

( )
2 2

t

1
t

2

U V P
H K

g g

+¢F + + + h + =
g

.         (6) 

 
3. Determination of the second constant in Gerstner’s wave potential 

 
 In this purpose [8] we used the Bernoulli’s relation (6), in which to profit 
by the same constant value K(t) in the whole domain, occupied by the ideal fluid, 
we shall use it in the same moment of time, for example, initial time t = 0. 
Also, we considered the constant pressure P0 on the wave free surface and how η 
(X, t) = Y-H, the wave height will have consequently the expression             

( ) ( )

2 2

t t

0,0 ,0 0,0 ,0 (7)
2 2 2 2

, ,0 0, ,0
12 2 2

, ,0 0, ,0 ,
2 2 2 2

h h
h Y Y H H

h h
U H U H

h h
H H

g g

λ λ     
= η − η = − = + − − =     

     

λ   
− − +     λ        ′ ′= + Φ − − Φ +    

    

       

where we have took into consideration the relation V(0,H+h/2,0) = V(λ/2,H-h/2,0) 
= 0 for the vertical velocity deduced from (3), and where by calculation of the 
maximum and minimum values of the horizontal velocity at the wave free surface  
 

0, ,0 ch
2 2

h h
U H kC k H
   

+ +   
   

�  and  , ,0 ch
2 2 2

h h
U H kC k H

λ   
− − −   

   
� ,  (8) 

 

and by introduction of the velocity potential derivatives with respect to the time 
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t 0, ,0 ch
2 2

h h
H C k H

   
′Φ + −ω +   
   

� and t , , 0 ch
2 2 2

h h
H C k H

λ   
′Φ − ω −   
   

� ,(9) 

 

the relation (7) will lead as to an equation of 2nd  degree, from that we can 
determinate the expression of the constant C (h, λ, H) 
 

2 2 2 2ch ch 2 ch ch 2 0,
2 2 2 2

h h h h
k k H k H C k H k H C gh
          

+ − − − ω + + − + =          
          

 

 

its solution being in the general case 
 

( )

( )
( )

( ) ( )

( ) ( )
( ) ( )

2
2

2 2 2

2 2 2

ch ch ch2 2 2

ch 2 ch ch2 2 2
, ,

ch ch2 2

h h hk H k H k H

h h hk H ghk k H k H

C H h
h hk k H k H

   + + ω + + − −
  ω ±

   + − − + − −    
λ =

 + − −
 

, (10) 

 

and consequently, the motion potential (3) will have the implicit expression 
 

( ) ( ) ( ), , , , , , , ch sinX Y t H h C H h kY kX tΦ λ = λ − ω .                     (3’) 
 

          With a view to obtain non-imaginary solutions for the constant C, it will 
must that in the relation (10) the expression value under the root must be positive. 
In this case, denoting by Hℵ = λ  and  χ = h/λ the relative heights of the wave 

and of the static water level in the channel, after a simple calculus we obtain the 
condition 

2

2
ch2 ch2 ch2 ch2

2 2 2 2

gh

c

χ χ  χ χ        
π ℵ+ + π ℵ− ≥ π ℵ+ − π ℵ−        
        

,      (11) 

 
or taking into account of the over-unitary value of the ratio calculated from (17) 
and of its expression in infinite series by performing the division, we obtained the 
evaluation 

( )
( )

2

2 3 4

2

2
1ch2 + 2 1 1 1 1 1

1 1 2 1
2 1ch2 - 12

gh

xc
gh x x x x x

c

χ +π ℵ
+  

≤ = + + + + χ −  π ℵ −

p � L f , (12) 

in which we denoted in the second ratio, over-unitary in practice, by 22 1x gh c= f , 
where by introducing of the propagation velocity expression of the traveller wave, 

obtained from the Gerstner’s theory, 2 th 2
2

g
c

λ
= πℵ

π
, results the necessary  
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condition to fulfil between the relative values, reported to the wave length, of the 
wave height and the water depth in the channel (fig.2), relation that stipulate the 
obtaining of the real values for the constant C > 0, because  ch k (H + h/2) > ch k 
(H - h/2) 

max

1
0.08 th 2

4
χ = ≥ χ πℵ

π
f .                                   (13) 

         hχ = λ                                   Real C  values domain 
 
                     0.1 
 
                              

χ maximum= 0.08                  

                                                                                                                 ( )χ ℵ  

                   0.06 
 
 
                   0.04 
 
 
                   0.02 

 
 

                       0 
              0                            0.5                             1                            1.5                            2  Hℵ = λ  

Fig. 2 The dependence of the relative wave height  χ = h / λ  of the water relative depth in the 
channel /Hℵ = λ  

 

4. Pressure local variation at wave propagation on a right bottom 

 
To determinate the pressure variation at wave propagation, we have two 

possibilities: 
 
4.1 Starting from the unsteady motion equations of the ideal and heavy 

liquid (4) and (5), by replacing the velocity expressions and their  
differential calculated from the potential (3) the two motion equations becoming: 

( ) ( ) ( )3 2
X ω ch sin ω sin cosP kC kY kX T k C kX T kX T¢= - r - + r - w - w ,     (4’) 

( ) 3 2
Y γ+ ω sh cos ω sh chP kC kY kX T k C kY kY¢= - r - - r ,          (5’) 

which by partial integration give us two relations for the same pressure function 

( ) ( ) ( ) ( )
2 2

, , , ch cos cos 2
4

k C
P X Y T F Y T C kY kX T kX T

ρ
= + ρω − ω − − ω ,  (4”) 

( ) ( ) ( )
2 2

, , , ch cos ch2k
4

k C
P X Y T G X T Y C kY kX T Y

ρ
= − γ + ρω − ω − .    (5”) 
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Because the pressure condition ( )
o

FS 0, constant,P Y X T P
 

= =  
on the free 

surface is not proper to the two unknown functions F and G, taking into 
consideration of their variables, we shall calculate the partial differential of the 
pressure function from the relations (5”) and (4”): 

( )X X ch sinP G k C kY kX T′ ′= − ρ ω − ω , ( )Y Y sh cosP F k C kY kX T′ ′= + ρ ω − ω , (14) 

which by matching with their expressions from (4’) and (5’) offer us the partial  
differentials of the two unknown functions from the previous partial integration, 
under the form: 

( ) ( ) ( )
3 2

3 2
X sin cos sin 2

2

k C
G k C kX T kX T kX T

ρ
′ = ρ − ω ⋅ − ω = − ω ,       (15) 

3 2
3 2

Y sh c h sh 2
2

k C
F k C kY kY kY

ρ
′ = −γ − ρ = −γ − ,       (16) 

from where, by partial integration, we shall obtain their expression with the 
approximation of two constants: 

( ) ( )
2 2

0, cos 2
4

k C
G X T G kX T

ρ
= − − ω  and ( )

2 2

0 ch 2
4

k C
F Y F Y kY

ρ
= − γ − .(17) 

      Replacing these so determined two functions in the relations (5”) and (4”), we 
shall obtain the two identically expressions of the unique function of pressure, 
considering that  F0 = G0: 

( ) ( ) ( )
2 2

0, , ch cos ch2 cos2
4

k C
P X Y T F Y C kY kX T kY kX T

ρ
 = − γ + ρω − ω − + − ω   

and                                    (18) 

( ) ( ) ( )
2 2

0, , ch cos ch2 cos2
4

k C
P X Y T G Y C kY kX T kY kX T

ρ
 = − γ + ρω − ω − + − ω  . 

 To determination of this unique constant, we shall observe that the 
cancelling of the component V = 0, can have place, so much on the channel 
bottom Y = 0, how on the wave free surface, if the down condition is fulfil 

 ( )
0

sin 0 0kX T kX T X T
T

λ
− ω = → − ω = → = ,         (19) 

which is not convenient, because the time can not more flow, when we fixed the  
abscise of de pressure variations observation in the phenomenon of traveller wave 
propagation. In this condition, we shall cancel the wave velocity component U = 
0, which can have place if only 

 
0 0

2
2 4 4

X T
kX T X T cT

T T

  π λ λ λ
− ω = π − = → = + = + 

λ 
.   (20) 

       Putting this condition on the wave free surface, we obtain for the initial time 
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{

2 2

0 0
10

, ,0 ch cos 2 ch2 cos
4 4

k C
P H P F H C kH kH

−

λ ρ   
= = − γ + ρω π − + π   

   123
,   (20) 

from where we can deduce the constant value 

( )
2 2

0 0 ch2 1
4

k C
F P H kH

ρ
= + γ + − ,           (21) 

determining in this kind the function expression that give the pressure variation in 
the traveller wave interior by the identification of the arbitrary integration function 

( ) ( ) ( )

( )
2 2

, , ch cos

ch2 1 ch2 cos 2 .
4

P X Y T P H Y C kY kX T

k C
kH kY kX T

= + γ − + ρω − ω +

ρ
 + − − − − ω 

           (22) 

 
4.2. Starting from the Daniel Bernoulli’s equation, deduced from the 

two motion equation (6), in which by introducing the expressions of the potential 
time differential and spacey partial differential and velocity components, we 
obtain for the integration function the expression 

( ) ( )

( ) ( )
2 2

2 2 2 2

ch cos

ch cos sh sin ,
2

P
K T C kY kX T gY

k C
kY kX T kY kX T

= - w - w + + +
r

é ù+ - w + - wê úë û

                (23) 

for whose determination we shall utilize the same condition for the two limits, 
valuable on the Free Surface for X = 0 and YFS = H, knowing the pressure value P0 
only on the wave free surface  

 
2 2

2 0

Y = H

3
, respectively sh

4 4 2

Pk C
K kH gH

æ öÁ Á÷ç = + +÷ç ÷÷çè ø r
,            (24) 

which introduced in the Bernoulli relation (6), permit us to known the pressure  

variation function in the wave interior 

( ) ( ) ( )

( ) ( )

2 2
2

0

2 2
2 2 2 2

2
, , sh ch cos

2

ch cos sh sin ,
2

k C C
P X Y T P H Y kH kY kX T

k C
kY kX T kY kX T

r pr
= + g - + + - w -

Á

r é ù- - w + - wê úë û

 (25) 

that for the abscise X = 0 become 

( ) ( )

( )

2 2
2

0

2 2
2 2 2 2

2
0, , sh ch cos

2

ch cos sh sin
2

k C C
P Y T P H Y kH kY T

k C
kY T kY T

r pr
= + g - + - w -

Á

r
- w + w

  (25’) 
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and for the bottom Y = 0, having the expression 
 

( )
2 2 2 2

2 2
0

2
0,0, sh cos cos ,

2 2

k C C k C
P T P H kH T T

ρ πρ ρ
= + γ + − ω − ω

ℑ
    (25”) 

 

or in dimensionless expression, for  p = P / P0  and /t T= Á , become (fig.3) 
 
 

( )
2 2 2 2

2 2
2 2

0 0 0 0

2 2 2
0,0, 1 sh 2 cos 2 cos 2

H C H C C
p t t t

P P P P

γ π ρ πρ π ρ
= + + π − π − π

λ λ ℑ λ
. (25”’) 

 
In this kind we can calculate the pressure variation in time at different 

heights and wanted abscise (for instance at Y = Yi  and  X = 0) in the period of 
wave propagation with a special geometry at the free surface (wavelength λ and 
height h), the static water depth in the channel being H. 
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Fig. 3. Dimensionless pressure variation in a point on the channel bottom, in a period of traveller 

wave propagation 
 

6. Conclusions 

 
The manner, used to determine the pressure variations in the traveller 

wave propagation, prove to be an appropriate method and show at the same time, 
that one cannot determine the wave height shape with an apparatus, which 
measures the static pressure. 
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